

Learning Nagios 3.0

A detailed tutorial to setting up, configuring,
and managing this easy and effective system
monitoring software

Wojciech Kocjan

 BIRMINGHAM - MUMBAI

Learning Nagios 3.0

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. The author, Packt Publishing, and its
dealers or distributors will not be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2008

Production Reference: 1101008

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-84719-518-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

[FM-2]

Credits

Author

Wojciech Kocjan

Reviewer

Manish Sapariya

Acquisition Editor

Adil Ahmed

Development Editor

Swapna Verlekar

Technical Editor

Aanchal Kumar

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Rajashree Hamine

Indexer

Monica Ajmera

Proofreader

Dirk Manuel

Production Coordinator

Rajni Thorat

Cover Designer

Rajni Thorat

[FM-3]

About the Author

Wojciech Kocjan is an experienced system administrator, IT professional, and
software engineer. He has ten years of experience in the IT industry, and his resume
includes international corporations such as IBM and Motorola. He also has several
years of experience in a variety of open source projects. His expertise includes
managing Linux, Sun, and IBM systems.

I'd like to thank my wife Joanna and my son Kacper for all of the
help and support during the writing of this book. I would also like to
thank people at Packt as they have given me a lot of help and plenty
of practical advice.

[FM-4]

 About the Reviewer

Manish Sapariya has nine years of experience in software development and
testing. He has worked on various technologies such as C++/ATL-COM, Windows,
and Linux device drivers, and OS platforms such as Windows, FreeBSD, and Linux.
He started his career with Zensar Technologies, Pune, working for the Fujitsu Ltd.
division. While working for Fujitsu Ltd, Manish worked on various test simulation
tools for the testing of hardware devices, including high-end servers, switches and
routers. For the last four years, he has been working with Great Software Laboratory
Pvt. Ltd., Pune, where he is currently responsible for testing products developed
at GSLab.

I would like to thank my wife Dharmishtha, and my family for all
their support while I have been reviewing this book.

[FM-5]

Table of Content
Preface 1
Chapter 1: Introduction 7

Introduction to Nagios 8
Benefits of Monitoring Resources 9
Main Features 11
Soft and Hard States 13
What's New in Nagios 3.0? 14
Summary 16

Chapter 2: Installation and Configuration 17
Installation 17

Upgrading from Previous Versions 18
Prerequisites 18
Obtaining Nagios 20
Setting up Users and Groups 21
Nagios Compilation 22
Registering Nagios as a System Service 27

Nagios Configuration 28
Main Configuration File 28
Macro Definitions 31
Configuring Hosts 34
Configuring Services 40
Configuring Commands 44
Configuring Time Periods 46
Configuring Contacts 48
Templates and Object Inheritance 52
Introduction to Notifications 56

Summary 58

Table of Contents

[ii]

Chapter 3: Using the Nagios Web Interface 59
Setting up the Web Interface 60

Configuring the Web Server 60
Accessing the Web Interface 62
Troubleshooting 63

Using the Web Interface 66
Tactical Overview 66
Status map 68

Managing Hosts 69
Status 70
Host Information 72

Managing Services 73
Status 73
Service Information 75

Managing Downtimes 77
Downtimes Status 77
Scheduling Downtimes 78

Managing Comments 79
Nagios Information 80

Process Information 81
Performance Information 82

Reports 83
Summary 86

Chapter 4: Overview of Nagios Plugins 87
Standard Network Plugins 89

Checking If a Host is Alive 90
Testing Connectivity over TCP and UDP 91

Monitoring Email Servers 92
POP3 and IMAP Checks 92
SMTP Daemon Testing 94

Monitoring Network Services 95
FTP Server 95
DHCP Tests 96
Verifying the Nagios Daemon 98
Testing Web Sites 99

Monitoring Database Systems 100
MySQL 101
PostgreSQL 102
Oracle 103
Other Databases 105

Table of Contents

[iii]

Storage Space 105
Virtual Memory Monitoring 105
Monitoring IDE/SCSI SMART 106
Checking Disk Space 107
Testing Free Space for Remote Shares 108

Resource Monitoring 109
System Load 110
Checking Processes 110
Monitoring Logged-in Users 111

Miscellaneous Plugins 112
APT Updates Checking 112
UPS Status Checking 113
LM Sensors 114
Dummy Check Plugin 114
Manipulating Other Plugins' Output 115

Summary 116
Chapter 5: Advanced Configuration 117

Maintainable Configurations 118
Configuration File Structure 120
Defining Dependencies 121
Using Templates 126
Custom Variables 131
Flapping 133
Summary 135

Chapter 6: Notifications and Events 137
Effective Notifications 138
Escalations 143
External Commands 149
Event Handlers 152
Modifying Notifications 157
Adaptive Monitoring 158
Summary 161

Chapter 7: Passive Checks and NSCA 163
What are Passive Checks? 163
Configuring Passive Checks 166
Passive Checks—Hosts 168
Passive Checks—Services 170
Troubleshooting Passive Checks 172
What is NSCA? 175
Obtaining NSCA 176

Table of Contents

[iv]

Compiling NSCA 177
Configuring the NSCA Server 179
Sending results over NSCA 181
Security Concerns 184
Summary 185

Chapter 8: Monitoring Remote Hosts 187
Monitoring over SSH 188
Configuring SSH 189
Using the check_by_ssh Plugin 193
Performing Multiple Checks 196
Troubleshooting SSH-Based Checks 201
Introduction to NRPE 202
Obtaining NRPE 205
Compiling NRPE 205
Configuring the NRPE Daemon 208
Installing NRPE as a System Service 211
Configuring Nagios for NRPE 214
NRPE and Command Arguments 216
Other Approaches 218
Troubleshooting NRPE 219
Summary 220

Chapter 9: SNMP 223
Introduction to SNMP 224
Data Objects 226
Working with SNMP and MIB 229
Graphical Tools 233
Setting up an SNMP Agent 236
Using SNMP from Nagios 241
Receiving Traps 245
Additional Plugins 249
Summary 249

Chapter 10: Advanced Monitoring 251
Monitoring Windows Hosts 252
NSClient++ 252
Performing Tests via check_nt 255
Performing Checks with NRPE Protocol 257
Passive Checks using NSCA Protocol 259
Distributed Monitoring 261
Obsessive Notifications 263
Configuring Nagios Instances 265

Table of Contents

[v]

Freshness Checking 267
Summary 270

Chapter 11: Chapter 11: Extending Nagios 271
Introduction 272
Active Checks 274
Writing Plugins the Right Way 277
Checking Websites 281
Monitoring VMware 284
Your Own Notifications 286
Managing Nagios 288
Using Passive Checks 291
Summary 295

Index 297

Preface
This book is a practical guide to setting up the Nagios 3.0 open source network
monitoring tool. Nagios 3 is a system that watches to see whether hosts and services
are working properly, and notifi es users when problems occur. This book covers
installing and confi guring Nagios 3 on various operating systems, but focuses
primarily on the Ubuntu Linux operating system.

This book takes the reader through the steps from compiling Nagios from the source,
through installing and confi guring it up to advanced features such as setting up
redundant monitoring. It also mentions how to monitor various services such as
e-mail, WWW, databases, and fi le sharing. This book describes what SNMP is and
how it can be used to monitor various devices. It also provides details on monitoring
Microsoft Windows computers. This book contains troubleshooting sections that aid
the reader in case any problems arise when setting up Nagios functionality.

No previous experience with network monitoring is required, although a basic
understanding of UNIX systems is assumed. This book provides examples for
extending Nagios in several languages including Perl, Python, Tcl, and Java so
that readers familiar with at least one of these technologies can benefi t from
extending Nagios.

When you fi nish this book, you’ll be able to set up Nagios to monitor your network,
and have a good understanding of what can be monitored and in which ways.

What This Book Covers
Chapter 1 talks about the Nagios application and system monitoring in general. It
shows the benefi ts of using system monitoring software, and the advantages of
Nagios in particular. It also introduces the basic concepts of Nagios.

Preface

[2]

Chapter 2 covers installing Nagios both when compiling from source code and when
using pre-built packages. Details of how to confi gure users, hosts, and services are
also given, as well as information on how Nagios sends notifi cations to users.

Chapter 3 talks about how to set up the Nagios Web interface, and what this offers
to the user. It describes basic views for hosts and services, and detailed information
on each individual item. It also introduces additional features such as scheduled
downtimes, detailed information, and reports.

In Chapter 4, we go through Nagios plugins that allow the performing of checks of
various services. It shows how you can check for standard services such as e-mail,
Web, fi le, and database servers. It also describes how to monitor resources such as
CPU usage, storage, and memory usage.

Chapter 5 focuses on managing large confi gurations and using templates. We see how
dependencies between hosts and services can be defi ned, what are custom variables,
and what adaptive monitoring is. We also look at fl apping—services that start and
stop randomly - and how Nagios detects this.

Chapter 6 describes the notifi cation system in more details. It focuses on effective
ways of communicating problems to users and how to set up problem escalations;
it also shows how events work in Nagios and how they can be used to perform the
automatic recovery of services.

Chapter 7 describes passive checks in detail. We give practical examples of when
and how they can be used. It also shows how to use NSCA (Nagios Service Check
Acceptor) for sending notifi cations.

Chapter 8 covers how Nagios checks can be run on remote machines. It walks
through the details of deploying checks remotely over SSH using public-key
authentication. It also shows how NRPE (Nagios Remote Plugin Executor) can be
used for deploying plugins remotely.

In Chapter 9, we learn about SNMP (Simple Network Management Protocol) and
how it can be used from Nagios. We start with an overview of SNMP and its
versions; then we go through reading SNMP values from SNMP-aware devices and
cover how this can then be used for performing checks from Nagios.

The fi rst part of Chapter 10 looks at distributed monitoring. It talks about how Nagios
can be set up on multiple hosts and how that information could be gathered on a
central server. The second part of the chapter covers how to monitor computers that
are running the Microsoft Windows operating system.

Chapter 11 shows you how to extend Nagios. We talk about how you can write your
own check commands, add your own ways of notifying users, and use passive
checks and NSCA to integrate your solutions with Nagios.

Preface

[3]

What You Need for This Book
No previous experience with network monitoring is required, although a basic
understanding of UNIX systems is assumed. This book also provides examples for
extending Nagios in several languages including Perl, Python, Tcl, and Java, so
that readers familiar with at least one of these technologies can benefi t from
extending Nagios.

Who is This Book For
The target readers for this book are System Administrators interested in using
Nagios. This book will teach Nagios beginners the basics of installation and
confi guration of version 3; it will show professionals who have already worked on
earlier versions of Nagios the new features of Nagios, such as inheritance and new
internal functions like better check scheduling.

Conventions
In this book, you will fi nd a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The development packages always
have the -dev suffi x in their package name—in this case, it would be the
libssl-dev package".

A block of code is set as follows:

define host
{
 host_name somemachine
 address 10.0.0.1
 check_command check-host-alive
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are shown in bold:

define host
{
 host_name somemachine
 address 10.0.0.1
 _MAC 12:12:12:12:12:12

 check_command check-host-by-mac
}

Preface

[4]

Any command-line input or output is shown as follows:

/opt/nagios/plugins/check_ping -H 10.0.0.1 -w 3000.0,80%
-c 5000.0,100% -p 5

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"It can be accessed by clicking on the Tactical Overview link in the left-side menu".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
mentioning the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book on this topic, see our author guide on
www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/5180_Code.zip to directly
download the example code.

The downloadable fi les contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you fi nd a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so you can save
other readers from frustration, and help to improve subsequent versions of this book.
If you fi nd any errata, report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your
errata. Once your errata are verifi ed, your submission will be accepted and the errata
added to the list of existing errata. Any existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the Internet, please provide the location
address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
Imagine you're working as an administrator of a large IT infrastructure. You have
just started receiving emails that a web application has stopped working. When you
try to access the same page, it just doesn't load. What are the possibilities? Is it the
router? Or the fi rewall? Perhaps the machine hosting the page is down? Before you
even start thinking rationally about what is to be done, your boss calls about the
critical situation and demands an explanation. In this panic situation, you'll probably
start plugging everything in and out of the network, rebooting the machine and so
on, and that doesn't help.

After hours of nervously digging into the issue you fi nally fi nd the solution— the
web server was working properly, but was timing out on communication with
the database server. This was because the machine with the database was not
getting a correct IP as yet another box had run out of memory and Dynamic Host
Confi guration Protocol (DHCP) server had stopped working. Imagine how much
time it would take to fi nd all that out manually. It would be a nightmare if the
database server was in another branch of the company, in a different time zone, and
perhaps the people over there were still sleeping.

And what if you had Nagios up and running across your entire company? You
would just need to go to the web interface, see that there are no problems with the
web server and the machine it is running on. There would also be a list of what's
wrong – that the machine serving IP addresses to the entire company is not doing its
job and that the database is down. If the set-up also monitored the DHCP server, you
would get a warning email that very little swap memory is available on it, or that too
many processes are running. Maybe it would even have an event handler for such
cases to just kill or restart noncritical processes. Also, Nagios would try to restart the
DHCP server process over the network, in case it is down.

Introduction

[8]

In the worst case, Nagios would speed up hours of investigation to 10 minutes. In the
best case, you would just get an email that there was a problem, followed by another
one saying that the problem is already fi xed. You would just disable a few services
and increase the swap size for the DHCP machine and solve the problem once for all.
And nobody would even notice there was a problem.

Introduction to Nagios
According to WikiPedia (http://en.wikipedia.org/wiki/System_Monitoring)
Nagios is a tool for system monitoring. This means that it constantly checks the status
of machines and various services on those machines. The main purpose of system
monitoring is to detect and report on any system not working properly, as soon as
possible, so that, you are aware of the problem before the user runs into it.

 Nagios does not perform any host or service checks on its own. It uses plugins to
perform the actual checks. This makes it a very modular and fl exible solution for
performing machine and service checks.

Objects monitored by Nagios are split into two categories: hosts and services. Hosts
are physical machines (servers, routers, workstations, printers and so on), while
services are particular functionalities, for example, a web server (an httpd process
on a machine) can be defi ned as a service to be monitored. Each service is associated
with a host it is running on. In addition, both machines and services can be grouped
into host and service groups, accordingly. We will look into the details of each of
these types of objects in the next section.

Host 1

(10.0.01)

Host 3

(10.0.03)

Hostgroup 1

Hostgroup 2

Host 2

(10.0.0.2)

Host 4

(10.0.0.4)

Web server
Database

server

SSH serverFTP server

File server
LDAP

server

Web server
Database

server

SSH serverFTP server

File server
LDAP

server

Chapter 1

[9]

Nagios has two major strengths when it comes to scanning—fi rst of all, instead of
monitoring values, it only uses four states to describe status: OK, WARNING, CRITICAL,
and UNKNOWN. The approach of only offering abstract states allows administrators to
ignore monitoring values and just decide on what the warning/critical limits are.
Having a strict limit to watch out for is much better as you always catch a problem
regardless of whether it turns from a warning to a critical limit in 15 minutes or in
a week. This is exactly what Nagios does. If you are monitoring a numeric value
such as the amount of disk space and CPU usage, you can defi ne thresholds for the
values which are considered correct, a warning, or a failure. For example, system
administrators tend to ignore things such as a slow decline in storage space. People
often ignore it until a critical process runs out of disk space.

A nother benefi t is that a report states the number of services that are up and running
in both warning state and critical state. Such a report offers a good overview of
your infrastructure status. Nagios also offers similar reports for host groups and
service groups, say when any critical service or database server is down. Such a
report can also help prioritize what needs to be dealt with fi rst, and which problems
can be handled later.

Nagios performs all of its checks using plugins. These are external components to
which Nagios passes information on what should be checked and what the warning
and critical limits are. Plugins are responsible for doing the checks and analyzing
the results. The output from such a check is a status (OK, WARNING, CRITICAL, or
UNKNOWN) and additional text providing information on the service in detail. This text
is primarily intended for system administrators to be able to read a detailed status of
a service.

N agios not only offers a core system for monitoring, but also offers a set of standard
plugins in a separate package (see http://nagiosplugins.org/ for more details).
These plugins allow checks for almost all of the services your company might have.
Refer to Chapter 4, Overview of Nagios Plugins, for detailed information on plugins
that are developed along with Nagios. If you need to perform a specifi c check (for
example, to connect to a web service and invoke methods), it is very easy to write
your own plugins. And that's not all—they can be written in any language, and it
takes less than a quarter of the time it takes to write a complete check command!
Chapter 11 Extending Nagios talks about this in more detail.

Benefits of Monitoring Resources
T here are many reasons why you should make sure that all of your resources are
working as expected. If you're still not convinced after reading the introduction to
this chapter, here are a few main points why it is important to monitor
your infrastructure.

Introduction

[10]

The main advantage is the improvement in quality. If your IT staff can notice failures
more quickly, they will also be able to respond to them much faster. Sometimes, it
takes hours or days to get the fi rst report of a failure even if many users are bumping
into errors. Nagios will make sure that if something is not working, you know
about it.

It is also possible to make Nagios perform recovery actions automatically. This is
done using event handlers. These are commands that are run after the status of a
host or service has changed—this way when a primary router is down, Nagios will
switch to a backup solution until the primary one is fi xed. A typical case would be to
start a dial-up connection as a fallback, in case VPN is down.

Another advantage is much better problem determination. Very often, what the
users report as a failure is far from the root cause of the problem—an email system
being down due to LDAP service not working correctly. If you defi ne dependencies
between hosts correctly, Nagios will point out that the POP3 email server is assumed
to be not working because the LDAP service, which it depends upon, has a problem.
Nagios will start checking the email server as soon as the problem with LDAP has
been resolved.

N agios is also very fl exible when it comes to notifying people about what isn't
functioning correctly. You can set it up to send emails to different people depending
on what is not functioning properly. In most of the cases, your company has a large
IT team or multiple teams. Usually you want some people to handle servers, and
others to handle network switches/routers/modems. You can even use Nagios'
web interface to manage who is working on what issue. You can also confi gure how
Nagios sends notifi cations via email, pager over Jabber, MSN, or by using your
own scripts.

M onitoring resources is not only useful for identifying problems; it can also save you
from running into them. Nagios handles warnings and critical situations differently.
This means that it's possible to recognize potentially problematic situations quickly.
For example, if your disk storage on an email server is running out, it's better to be
aware of this situation before it becomes a critical issue.

Monitoring can also be set up on multiple machines across various locations that can
communicate all their results to a central Nagios server. This way, information on all
hosts and services in your system can be accessed from a single machine. This gives
you a more complete picture of your IT infrastructure, and also allows for testing of
more complex things such as fi rewalls.

Chapter 1

[11]

Main Features
N agios' main strength is its fl exibility—it can be confi gured to monitor your IT
infrastructure in the way you want. It also has a mechanism to automatically react
to problems, and a powerful notifi cation system. All of this is based on a clear object
defi nition system and on a few object types:

 1. Commands are defi nitions of how Nagios should perform particular types of
checks; they are an abstraction layer on top of the actual plugins that allow
you to group similar types of operations.

2. Time periods are date and time spans within which an operation should
or should not be performed; for example: Monday to Friday between 09:00
and 17:00.

3. Contacts and contact groups are people who should be notifi ed, along with
information on how and when they should be contacted. Contacts can be
grouped and a single contact can be a member of more than one group.

4. Host are physical machines, along with information on who should be
contacted, how checks should be performed, and when. Hosts can be grouped;
into host groups each host may be a member of more than one host group.

5. Services are various functionalities or resources to monitor a specifi c host,
along with information on who should be contacted, how the checks should
be performed, and when. Services can be grouped into service groups; each
service may be a member of more than one service group.

6. Host and service escalations defi ne the specifi c time period after which
additional people should be notifi ed of certain events – for example a critical
server being down for more than 4 hours should alert IT management so
that they start tracking the issue. These people are defi ned in addition to the
normal notifi cations confi gured in the host and service objects.

Introduction

[12]

A n important benefi t that you will gain by using Nagios is a mature dependency
system. For any administrator, it is obvious that if your router is down, all machines
accessed through it will fail. Some systems don't take that into account and in such a
case, you would get a list of several failing machines and services. Nagios allows you
to defi ne dependencies between hosts to refl ect your actual network topology. For
example, if a switch that connects you to a router is down, Nagios will not perform
any checks on the router or on the machines that are dependant on the router. This is
illustrated in the following example:

Nagios server FTP Server WWW Server

Switch 1

Router 2

Switch 2

Database serverEmail server

Switch down Router 1

Legend

Host/services not checked
Host down
Host/services checked

Yo u can also defi ne that one particular service depends on another service; either
on the same host or on a different host. If one of the services is down, a check for
a service that depends on it is not performed. For example, for your company's
intranet application to function properly, both an underlying web server and a
database server must be running. So, if a database service is not working properly,
Na gios will not perform checks on your application. The database server might be
on the same host or on a different host. In such a case, if the machine is down or not
accessible, notifi cations for all services dependent on the database service will not be
sent out either.

Chapter 1

[13]

Nagios offers a consistent system of macro defi nitions. These are the variables that
can be put into all object defi nitions, depending on what the context is. They can be
put inside commands, and depending on host, service, and many other parameters,
values are substituted accordingly. For example, a command defi nition might use
the IP address of the host it is currently checking in all remote tests. This also makes
it possible to put information such as the previous and current statuses of a service
in a notifi cation email. Nagios 3 also offers various extensions to macro defi nitions,
which makes it an even more powerful mechanism. This is described in detail in the
last section of this chapter.

Nagios also offers mechanisms for scheduling planned downtimes. You can schedule
that a particular host or service is planned to be unavailable. This will prevent
Nagios from notifying people to be contacted regarding the problems related to these
objects. Nagios can also notify people of planned downtimes automatically. This is
mainly used when maintenance of the IT infrastructure is to be carried out, and the
servers and/or services they provide are unavailable for a long time. This allows
the creation of an integrated process of scheduling downtimes that will also handle
informing the users.

S oft and Hard States
Na gios works by checking if a particular host or service is working correctly and
storing its status. Because the status of a service is only one of the four possible
values, it is crucial that it actually refl ects what the current status is. In order to avoid
detecting random and temporary problems, Nagios uses soft and hard states to
describe what the current status of a host or service is.

Imagine that an administrator is restarting a web server and this operation makes
connection to the web pages unavailable for fi ve seconds. As, usually, such restarts
are done at night to lower the number of users affected, this is an acceptable period
of time. However, a problem might arise when Nagios tries to connect to the server
and notices that it is actually down. If it relies only on a single result, Nagios would
trigger an alert that a web server is down. It would actually be up and running again
in a few seconds, but it could take a couple of minutes for Nagios to fi nd that out.

To handle situations when a service is down for a very short time, or the test
has temporarily failed, soft states were introduced. When the status of a check is
unknown, or it is different from the previous one, Nagios will retest the host or
service several times to make sure that the change is persistent. The number of
checks is specifi ed in the host or service confi guration. Nagios assumes that the
new result is a soft state. After additional tests have verifi ed that the new state is
permanent, it is considered a hard state.

Introduction

[14]

Each host and service defi nition specifi es the number of retries to be performed
before it can be assumed that a change is permanent. This allows more fl exibility
over how many failures should be treated as an actual problem instead of a
temporary one. Setting the number of checks to one will cause all changes to be
treated as hard instantly. The following is an illustration of soft and hard state
changes, assuming that number of checks to be performed is set to three:

Check

results
OK OK OK OK Critical Critical Critical Critical

Soft state: OK Hard state: OK Soft state: Critical Hard state: Critical

Thi s feature allows ignoring short outages of a service. It is also very useful for
performing checks that can periodically fail even if everything is working correctly.
Monitoring devices over SNMP is also an example where a single check might fail,
but the check will eventually succeed during the second or third check.

What's New in Nagios 3.0?
This section is primarily intended for people who are already familiar
with Nagios functionality and want to know what has been added in
the new version. If you are not experienced with Nagios, not all issues
mentioned in this section may be clear to you.

The new Nagios version comes with a bunch of new functionality and fi xes.
However, this section covers only the most important ones. It is recommended that
you view the complete Changelog fi le that comes with all distributions of Nagios, or
the Nagios documentation.

Macro handling is one area where there have been numerous changes. The
most important improvement you might notice is that 40 new macros have
been added. A notable incompatible change is that the $NOTIFICATIONNUMBER$
macro has been removed in favor of the $HOSTNOTIFICATIONNUMBER$ and
$SERVICENOTIFICATIONNUMBER$ macros. Moreover, macros have now been set
as environment variables so that your scripts can access them easily. Because this
can cause performance issues, there is also an option to disable the environment
variables settings of all Nagios macros.

Chapter 1

[15]

There have been signifi cant changes to how Nagios stores information. The main
reason behind this is that Nagios now allows plugins to return multiple lines with
information or performance data. This allows more detailed information about hosts
and services to be stored. The format of Nagios information and retention fi les has
changed to adapt to this functionality. In the previous format for storing status and
many other fi les, each line was used to represent a single object. This information is
now stored in a format similar to Nagios confi guration. This requires changes for all
applications that read service statuses directly from the Nagios fi les.

The previous versions of Nagios stored scheduled downtimes as well as host and
service comments in separate fi les. Version 3.x introduced a retention fi le that stores
various information related to hosts and services. This fi le now contains a list of
scheduled downtimes and comments related to each item. It also allows the storage
of more information on Nagios restarts, which would be useful when performing
frequent restarts.

The embedded Perl interpreter is where a lot has changed under the hood as well.
You can now decide whether or not to use embedded Perl in the confi guration at
compilation time, as it was with 1.x and 2.x. In addition, individual plugins may decide
if they want to force enabling or disabling embedded Perl usage. This would mainly be
useful if a few of your Perl plugins cause problems with embedded Perl and you don't
want to lose the functionality of other plugins that also have embedded Perl.

Now, it is also possible to change the frequency of monitoring hosts or services on
the fl y. This can be done by sending proper commands to the Nagios daemon. This
functionality can be used to modify how often an object should be checked, as well
as the time periods during which checks should be performed and notifi cations
should be sent out.

A large improvement has been made in terms of host and service defi nitions. The
major difference is that inheritance can now be done from more than object—this
means that your host defi nition can inherit some attributes from one template
and the remaining attributes from another. Services also inherit all contact and
notifi cation settings from the host they are running on, unless otherwise specifi ed.

Sta rting with Nagios 3, it is possible to specify group members by specifying other
groups. All objects that are members of specifi ed groups will also be members of
this group. For example, when defi ning a host group, it is possible to specify other
host groups. All hosts who are members of such a group will also be members of the
currently-described group.

Host checks have also been improved in various ways. Starting with Nagios 3, all
checks will be done in parallel, which speeds up Nagios performance enormously.
Host check retry handling has also been improved, and now uses the same logic as
the service checks.

Introduction

[16]

The dependency system has also been improved in Nagios 3. It is now much
easier to confi gure complex dependencies. This also allows defi ning dependencies
between services on the same host by not specifying dependent host name. It is also
possible to set up periods for which dependencies are valid. If nothing is specifi ed, a
dependency is valid all the time.

Nagios 3 also introduces support for pre-caching object information. This means
that instead of reading all parameters from the confi guration fi le and creating
a dependency set for all types of objects, Nagios is able to save its internal
representation of the data, so that the next time it starts, it reads the cache instead of
re-analyzing the confi guration.

Defi ning time periods also is more powerful now. It is possible to specify date
exceptions. For example, combining a defi nition of Monday to Friday from 9 AM to
5 PM with national holidays will offer a more precise defi nition of working hours.
It is also possible to use a skip date in the time period; for example, 'every 3 days'.

For a complete list of changes, please visit Nagios 3.0 documentation website:
http://nagios.sourceforge.net/docs/3_0/whatsnew.html.

Summary
There are many benefi ts of using system monitoring. It makes sure that services
are working correctly. It helps in detecting problems earlier and ensuring that the
appropriate people are notifi ed when something goes wrong. Ensuring that all of
your services work properly is essential. In case of problems, such systems help in
giving a clear picture of what's working, and what's not.

Nagios is a very powerful application for monitoring resources. It fi ts both
small-sized and enterprise-level environments. It can help your organization
maintain a higher quality of services. Nagios also helps in determining the root cause
of problems. It includes very fl exible mechanisms for monitoring your infrastructure
and notifying the IT staff of potentially critical problems.

Nagios features a rich confi guration system with many features such as grouping
hosts and services, setting up dependencies and escalations. All of these make it
possible to confi gure both a small network and a huge IT infrastructure spanning the
entire globe.

Nagios is extremely powerful as it can be confi gured in almost any way you want.
Furthermore, it can also be extended to perform any type of operation needed for
your company.

Installation and Configuration
This chapter describes how to install Nagios and standard Nagios plugins. The
process described here does not take advantage of any of the packaging systems that
are currently available on the majority of operating systems.

It is recommended that you consult your operating system and software distribution
mechanisms to see if they are already offering Nagios packages. Obtaining and
installing Nagios as a binary distribution, suited to a particular platform, is always a
better choice as it also offers automated upgrades and ensures that all dependencies
are met.

Manual installation is recommended for system administrators who want more
power over where their software is installed, and want to manage software upgrades
and confi gurations on their own.

This chapter also covers the basics of Nagios confi guration, and what types of objects
can be confi gured.

Installation
This section discusses the installation of Nagios 3. The following points are discussed:

Upgrading from previous versions
Prerequisites
Obtaining Nagios
Setting up users and groups
Nagios compilation
Registering Nagios as a system service

Let us look at each point in detail.

•

•

•

•

•

•

Installation and Confi guration

[18]

Upgrading from Previous Versions
 If you already have Nagios 1 or 2, upgrading to Nagios 3 would be worthwhile. In
such cases, you should proceed with the same steps as when performing a fresh
installation. You need to use the same user name, groups and directories that you
have used for previous Nagios installations.

It is also necessary to stop all Nagios processes before performing an upgrade. This
can usually be done by invoking the following command:

/etc/init.d/nagios stop

This way, both Nagios and the plugins will install smoothly. As Nagios 3
confi guration parameters are backwards compatible, your current confi guration will
work fi ne after upgrading.

Prerequisites
 This section applies to people compiling Nagios from sources and installing them
manually. Almost all modern Linux distributions include Nagios (1.x, 2.x or 3.0) in
their packages. The Nagios website also offers instructions for automated installation
on several operating systems. In such cases, all related packages will be installed
by the underlying system (such as APT in Debian and Ubuntu systems). Usually,
a system with the development set of packages already installed contains all the
packages needed to build Nagios.

Building Nagios from sources requires a C compiler, standard C library development
fi les and the make/imake command. Additionally, the development fi les for
OpenSSL should be installed so that the network-based plugins will be able to
communicate over the SSL layer. The MySQL and PostgreSQL development
packages should also be installed so that database checks can be run.

First of all, if we are planning to build the Nagios system, a compiler along with
several build tools such as gcc, make, cpp, and binutils are required. It will also
need the standard C library development fi les. Although these packages usually
come installed, make sure that they are actually there before compilation.

Nagios by itself does not have a large number of packages that offer some of the
basic functionalities that you would want on your system. So, if you want to use all
the functionalities that Nagios can offer, you will have to install additional software.

OpenSSL development fi les (includes and libraries) are required for Nagios plugins
to communicate over SSL. If you plan to monitor MySQL or PostgreSQL databases,
you should install header fi les and libraries for these databases. This will allow
building check plugins to monitor databases.

Chapter 2

[19]

If we want to use the Nagios web interface, a web server capable of serving CGI
scripts is required. Apache web server (1.x or 2.x) is recommended, and is also the
most popular web server on a Linux installation. Although Nagios works with any
web server that supports CGI, this book covers confi guring Apache.

Additionally, several plugins from the Nagios standard distribution are written
in Perl, and will not work if Perl is not installed. Some plugins also need Perl's
Net::Snmp package to communicate with devices over SNMP protocol.

Moreover, the GD graphics library is needed for the Nagios web interface to create
a status map and trends images. We will also need to install libraries for JPEG and
PNG images so that GD can create images in these formats.

All of the packages mentioned above are usually installed with many operating
systems, and most of them are already available for almost any UNIX based platform.

Throughout this chapter, we will use the Ubuntu Linux 7.10 'Gutsy' distribution,
as it is very popular. All newer Ubuntu platforms use the same package names, so
commands used here will work without any problems.

We will also install Apache 2.2.4 and Perl 5.8.8 from Ubuntu packages. For different
operating systems, the packages are similar though they may have different names.
The following is a command to install all the packages for our chosen distribution:

apt-get install gcc make binutils cpp libpq-dev libmysqlclient15-dev\
 libssl0.9.8 libssl-dev pkg-config apache2 \
 libgd2-xpm libgd2-xpm-dev libgd-tools \
 libpng12-dev libjpeg62-dev \
 perl libperl-dev libperl5.8 libnet-snmp-perl

Package names may also be different for other operating systems and distributions.
The command to install corresponding packages may also be different. For RPM
packages, the naming convention is a bit different—the development packages have
a suffi x of devel. Libraries themselves are also named in a slightly different manner.

 For Red Hat Enterprise Linux and Fedora Core operating systems with yum installed,
the command to install all prerequisites would be:

yum install gcc imake binutils cpp postgresql-devel \
 libmysql15lib mysql15-devel \
 openssl openssl-devel pkg-config httpd \
 libgd2 libgd2-devel libgd-progs libpng libpng-devel \
 libjpeg libjpeg-devel perl perl-devel perl-Net-SNMP

Installation and Confi guration

[20]

A system with the development packages already installed, usually, contains all the
packages needed to build Nagios.

Obtaining Nagios
 Nagios is an open-source application, which means that the source code of all Nagios
components is freely available from the Nagios home page. Nagios is distributed
under GNU GPL (General Public License) version 2 (visit http://www.gnu.org/
licenses/old-licenses/gpl-2.0.html), which means that Nagios source code
can be redistributed and modifi ed freely under the condition that all changes are also
distributed as source code. Nagios also has a standard set of plugins. They are not
only developed independently as SourceForge projects (see http://sourceforge.
net/projects/nagiosplug/), but are also distributed under GPL version 2 license.

First of all, many operating systems already have binary distributions of Nagios.
If you are not an IT expert and just want to try out or learn Nagios in your
environment, it is best to use binary distributions instead of compiling Nagios by
yourself. Therefore, it is recommended that you check to see if your distribution has
a compiled version of Nagios 3 available.

For Red Hat and Fedora Linux systems, the Nagios download page contains RPMs
that can simply be installed onto your system. For other distributions, their package
repository may contain binary Nagios packages. The Nagios Exchange website
http://www.nagiosexchange.org/ also hosts Nagios builds for various platforms
such as AIX or SUSE Linux. All binary distributions of Nagios are split into packages
(rpm, dpkg, pkg, or bin fi le) that contain the Nagios daemon. It is usually called
Nagios, and the standard set of plugins is usually called Nagios Plugins.

If you are an experienced user and want to control software installed on your
machines, it's recommended that you install Nagios from the source. In this case, you
should also download sources of both Nagios and the Nagios plugins.

 In order to download the Nagios source packages, please go to the Nagios download
page at http://www.nagios.org/download/. All Nagios downloads are hosted on
SourceForge, so the download links will redirect you to the SourceForge download
pages. The download process should begin automatically.

You should start by downloading the source tarball of the latest Nagios 3.x branch. It
is available under the Step 1: Get Nagios section. Please make sure that you download
a stable version (such as 3.0, 3.1, and so on), instead of the most recent CVS snapshot,
as these versions might not always be as stable as the users expect. The fi lename of
the source tarball should be similar to nagios-3.0.tar.gz, depending on the exact
version you are attempting to download.

Chapter 2

[21]

You should also download the source tarball of the latest offi cial Nagios plugins
from the same downloads page. It is available under the Step 2: Get Plugins section.
The fi lename for the plugins should be similar to nagios-plugins-1.4.11.tar.gz,
again depending on the exact version.

These fi les are used in the next section of this chapter to build Nagios from the source.

Setting up Users and Groups
 This section describes how to compile and install Nagios and standard Nagios
plugins from source tarballs. If you plan to install Nagios from binary distributions,
you should skip this section and proceed to the next sections that describe exact
Nagios confi gurations. You might also need to adjust the parameters mentioned in
this book to specify the directories your Nagios installation uses.

If you are upgrading from a previous Nagios version, you will have all of the users
and groups set up already. In this case, you should proceed to the next section.

The fi rst thing that needs to be done is to decide where to install Nagios. In this
section, we will install the Nagios binaries in the /opt/nagios directory, and all
confi guration fi les will be based on these locations. This is a location for all Nagios
binaries, plugins, and additional fi les. Nagios data will be stored in the /var/nagios
directory, where it keeps information about its current and historical status. It can
be part of the Nagios binaries installation directory or a separate directory, as in our
case. Nagios confi guration will be put into /etc/nagios.

After we have decided on our directory structure, we need to set up users and
groups for Nagios data. We will also create a system user and a group, nagios,
which will be used by the daemon. We will also set up a group, nagioscmd, which
can communicate with the daemon. The system user will be a member of the nagios
and nagioscmd groups.

The following commands will create the groups and user mentioned above:

groupadd -g 5000 nagios
groupadd -g 5001 nagioscmd
useradd -u 5000 -g nagios -G nagioscmd -d /opt/nagios nagios

We create a new user and groups because Nagios processes run as separate
users. This increases the security and allows a more fl exible set up. Nagios also
communicates with external components over a Unix socket – this is a socket that
works in a similar way to a fi le on your fi le system. All commands are passed to
Nagios via the pipe, and therefore, if you want your processes to be able to send
reports or changes to Nagios, you need to make sure that they have access to the
socket. One of the common uses for this is that the Nagios web interface needs to be
able to send commands to the monitoring process.

Installation and Confi guration

[22]

 If you want to use the web interface, it is necessary to add the user that your web
server runs as, to the nagioscmd group. This will allow the web interface to send
commands to Nagios.

 The user that the web server is working as is usually www-data, apache or httpd. It
can be checked with a simple grep command:

root@ubuntu:~# grep ^User /etc/apache*/* /etc/httpd*/*
/etc/apache2/apache2.conf:User www-data

For our preceding example, we now know the user name is www-data. So now, we'll
add this user to the group nagioscmd. This requires a simple command to be run:

usermod -G nagioscmd www-data

Nagios Compilation
 The next step is to set up Nagios destination directories and change their owners
accordingly. The following commands will create the directories, and change their
owner, user, and group to nagios.

mkdir -p /opt/nagios /etc/nagios /var/nagios
chown nagios.nagios /opt/nagios /etc/nagios /var/nagios

We will now create a source directory where all of our builds will take place. For the
purpose of this book, this will be /usr/src/nagios3. We need to extract our Nagios
and standard plugins into that directory. The extraction will create nagios-3.0 and
nagios-plugins-1.4.11 subdirectories (or similar ones, depending on your
source versions).

Now, let's go to the directory where the Nagios source is located – in our case, this
is /usr/src/nagios3/nagios-3.0. We'll confi gure Nagios parameters for the
directories we plan to install into by running the configure script. Some of the
options that the script accepts are described here:

Option Description
--prefi x=<dir> Specifi es the main directory into which all Nagios binaries

are installed; defaults to /usr/local/nagios
--sysconfdir=<dir> Specifi es the directory where all Nagios confi guration will be

stored; defaults to [PREFIX]/etc
--localstatedir=<dir> Specifi es the directory where all Nagios status and other

information will be kept; defaults to [PREFIX]/var

Chapter 2

[23]

Option Description
--enable-embedded-perl Informs Nagios to use the embedded Perl interpreter;

see below for more details; the option is disabled if
not specifi ed

--with-nagios-user=<user> Specifi es the Unix user to use for the Nagios daemon;
defaults to nagios

--with-nagios-group=<grp> Specifi es the Unix group to use for the Nagios daemon;
defaults to nagios

--with-mail=<path> Specifi es the path to the mail program used for
sending emails

--with-httpd-conf=<path> Specifi es the path to the Apache confi guration directory;
can be used to generate Apache confi guration fi les

--with-init-dir=<path> Specifi es the directory into which all scripts required for
setting up a system service should be installed; defaults to
/etc/rc.d/init.d

The --enable-embedded-perl option will cause Nagios to use the embedded
Perl interpreter instead of forking child processes to run plugins written in Perl.
This option is not needed for Nagios to function, but in case you plan to run many
plugins written in Perl, it might improve Nagios's overall performance. You can also
enable it during compilation, and if your Nagios setup seems to behave incorrectly,
you can always turn embedded Perl off in Nagios's main confi guration fi le. If you are
new to Nagios, it is not recommended that you turn this option on.

For the directory structure that was described earlier in this section, the following
confi gure script should be used:

sh configure \
 --prefix=/opt/nagios \
 --sysconfdir=/etc/nagios \
 --localstatedir=/var/nagios \
 --libexecdir=/opt/nagios/plugins \
 --with-command-group=nagioscmd

The script may take time to complete as it will try to guess the confi guration of your
machine, and verify how to build Nagios.

If the configure script failed, the most probable reason is that one or more
prerequisites are missing. At that point, you will need to analyze which test failed,
and install or confi gure additional packages. Most of the times, the output is quite
clear, and it is easy to understand what went wrong.

Assuming the configure command works, we now need to build Nagios. The build
process uses make command, similar to almost all Unix programs. The following
commands can be used to build or install Nagios:

Installation and Confi guration

[24]

Command Description
make all Compiles Nagios; this is the fi rst thing you should be doing
make install Installs main program, CGI and HTML fi les
make install-commandmode Installs and confi gures external command fi le
make install-confi g Installs sample Nagios confi guration; this target should

only be used for fresh installations
make install-init Installs scripts to set up Nagios as a system service

First, we'll need to build every module within Nagios. To do this, simply run the
following command:

make all

An error may occur in case some header fi les are missing, or when a development
package is not installed.

The following is a sample output from a successful Nagios build. It fi nishes with a
friendly message saying that it has completed successfully.

cd ./base && make
make[1]: Entering directory '/usr/src/nagios3/base'
[…]
*** Compile finished ***
[…]

Enjoy.

In case an error occurs during the build, the information about the same is also
shown. For example, consider the following sample output from build:

[…]
In file included from checks.c:40:
../include/config.h:163:18: error: ssl.h: No such file or directory
[…]
make[1]: *** [checks.o] Error 1
make[1]: Leaving directory '/usr/src/nagios3/base'
make: *** [all] Error 2

If this or a similar error occurs, please make sure that you have all the prerequisites,
mentioned earlier, installed. Also, please make sure that you have enough memory
and storage space during compilation, as this might also cause unexpected crashes
during builds.

Chapter 2

[25]

On Ubuntu systems, it is possible to look for development packages using the
apt-cache search command. For example, apt-cache search ssl will fi nd all
packages related to OpenSSL. The development packages always have the -dev
suffi x in their package name—in this case, it would be the libssl-dev package.

Now, we need to install Nagios by running the commands:

make install
make install-commandmode

For a fresh install, it is recommended to also install sample confi guration fi les that
will be used later for confi guring Nagios.

make install-config

The installation of Nagios is now complete. It is recommended that you keep all your
Nagios sources as well as prepare dedicated scripts that install Nagios. This is just in
case you decide to enable/disable specifi c options and don't want to guess exactly
how Nagios was confi gured to build the last time it was installed.

The next step to be carried out is compilation of standard Nagios plugins.

Now, let's go to the directory where Nagios plugins source code is located—in our
case, it is /usr/src/nagios3/nagios-plugins-1.4.11. We will confi gure Nagios
plugins parameters for the directories we plan to install it into by running the
configure script. Some of the options that the script accepts are described here:

Option Description
--prefi x=<dir> Specifi es the main directory all Nagios binaries are installed

in; defaults to /usr/local/nagios
--sysconfdir=<dir> Specifi es the directory where all Nagios confi guration will

be stored; defaults to [PREFIX]/etc
--libexecdir=<dir> Specifi es the directory where all Nagios plugins will be

installed; defaults to [PREFIX]/libexec
--localstatedir=<dir> Specifi es the directory where all Nagios status and other

information will be kept; defaults to [PREFIX]/var
--enable-perl-modules Installs Nagios::Plugin package along with all

dependant packages
--with-nagios-user=<user> Specifi es Unix user to use for Nagios daemon;

defaults to nagios
--with-nagios-group=<grp> Specifi es Unix group to use for Nagios daemon;

defaults to nagios

Installation and Confi guration

[26]

Option Description
--with-pgsql=<path> Specifi es path to PostgreSQL installation; required for

building of PostgreSQL testing plugins
--with-mysql=<path> Specifi es path to MySQL installation; required for building

of MySQL testing plugins

The option --enable-perl-modules allows installing additional Perl modules that
aid in developing your own Nagios plugins in Perl. It is useful to enable this option
if you are familiar with Perl.

Options --with-pgsql and --with-mysql allow us to specify the locations for the
installation of PostgreSQL and/or MySQL databases. It is used to create plugins for
monitoring PostgreSQL and/or MySQL. If not specifi ed, the build process will look
for the development fi les for these databases in their default locations. Installing
development fi les for these databases is described in the Prerequisites section.

 For the directory structure that was described earlier in this section, the following
configure script should be used:

sh configure \
 --prefix=/opt/nagios \
 --sysconfdir=/etc/nagios \
 --localstatedir=/var/nagios \
 --libexecdir=/opt/nagios/plugins \
 --enable-perl-modules

The script should run for some time and succeed, assuming that all prerequisites are
installed. If not, the script should indicate what the missing component is.

The build process also uses the make command in a manner similar to the way
Nagios is compiled. In this case, only the targets all and install will be used.
Therefore, the next step is to run make commands as shown here:

make all
make install

If any of these steps fail, an investigation on what exactly has failed is needed, and if
it is due to a missing library or a development package, they will have to be installed
and the commands tried again.

If all of the above commands have succeeded, you now have a fully installed Nagios
setup. Congratulations!

Chapter 2

[27]

Registering Nagios as a System Service
 After installing Nagios, it is worth making sure that the daemon is running as a
system service, and will start up properly during system boot.

In order to do that, go to the source directory (in our case it is be /usr/src/
nagios3/ nagios-3.0) and then run the following command:

make install-init

This will install a script in our init.d directory (this usually is /etc/init.d or
/etc/rc.d/init.d). The script is automatically created, and will contain the
usernames and paths that were created when the configure script was run.

 The next step is to set up a system to stop and start this service automatically.
Depending on your system, the command to do that can be one of the following:

chkconfig --add nagios ; chkconfig nagios on
update-rc.d nagios defaults

After Nagios has been set up as a system service, it is recommended that you reboot
your system to verify that it is actually starting. After your system has fully restarted,
making sure Nagios is running can be done by checking the process list as follows:

root@ubuntu:~# ps –ef|grep ^nagios
nagios 796 1 0 00:00:00 /opt/nagios/bin/nagios –d /etc/nagios
/nagios.cfg

If at least one process is found, it means that Nagios has been properly started. If not,
please read the Nagios log fi le (whose name is /var/nagios/nagios.log assuming
a Nagios installation as described earlier) and see exactly why it is failing. This
usually relates to incorrect permissions. In such a case, you should perform all of the
steps mentioned in the previous sections and reinstall Nagios from the beginning.

The results of the startup is mentioned at the end of the log fi le and an error
indication should also be present of what the issue might be. For example, a part of
the log for an error related to incorrect permissions is as follows:

[1217273964] Nagios 3.0 starting... (PID=5509)
[1217273964] Local time is Mon Jul 28 21:39:24 CEST 2008
[1217273964] LOG VERSION: 2.0
 [1217273964] Finished daemonizing... (New PID=5510)
[1217273964] Error: Could not create external command file '/var/
nagios/rw/nagios.cmd' as named pipe: (13) -> Permission denied. If
this file already exists and you are sure that another copy of Nagios
is not running, you should delete this file.

[1217273964] Bailing out due to errors encountered while trying to
initialize the external command file... (PID=5510)

Installation and Confi guration

[28]

 By default, Nagios also sends its logs to the syslog daemon. So if the Nagios log
fi le does not exist, looking in the system log (usually /var/log/messages) might
provide some information about the problem.

If you wish to start or stop Nagios manually, please run the nagios script from the
init.d directory with one of the parameters shown.

/etc/init.d/nagios stop|start|restart

Please note that path to the init.d directory might be different for your
operating system.

Nagios Configuration
 Nagios stores its confi guration in a separate directory. Usually it's either in /
etc/nagios or /usr/local/etc/nagios. If you followed the steps for a manual
installation, (as described above) it would be in /etc/nagios.

Main Configuration File
 The main confi guration fi le is called nagios.cfg, which is the main fi le that is loaded
during Nagios startup. Its syntax is simple—a line beginning with # is a comment,
and all lines in the form <parameter>=<value> will set a value. In some cases, a
value might be repeated (such as specifying additional fi les/directories to read).

The following is a sample of Nagios's main confi guration fi le:

log file to use
log_file=/var/nagios/nagios.log
object configuration directory
cfg_dir=/etc/nagios/objects
storage information
resource_file=/etc/nagios/resource.cfg
status_file=/var/nagios/status.dat
status_update_interval=10
(…)

The main confi guration fi le needs to defi ne a log fi le to use, and that has to be
passed as the fi rst option in the fi le. It also confi gures various Nagios parameters that
tune Nagios's its behavior and performance. The following are some of the
commonly-changed options:

Chapter 2

[29]

Option Description
log_fi le Specifi es the log fi le to use; defaults to [localstatedir]/

nagios.log

cfg_fi le Specifi es the confi guration fi le to read for object defi nitions;
might be specifi ed multiple times

cfg_dir Specifi es the confi guration directory which contains all fi les that
should be read for object defi nitions; might be specifi ed multiple
times

resource_fi le Specifi es the that stores additional macro defi nitions;
[sysconfdir]/resource.cfg

temp_fi le Specifi es the path to the temporary fi le that is used for
temporary data; defaults to [localstatedir]/nagios.tmp

lock_fi le Specifi es the to the fi le that is used for synchronization; defaults
to [localstatedir]/nagios.lock

temp_path Specifi es the directory in which Nagios can create temporary
fi les; defaults to /tmp

status_fi le Specifi es the path to the fi le that stores the current status of all
hosts and services; defaults to [localstatedir]/status.dat

status_update_interval Specifi es how often (in seconds) the status fi le should be
updated; defaults to 10 (seconds)

nagios_user Specifi es the user to run the daemon as
nagios_group Group to run the daemon as
command_fi le Specifi es the path to the external command line that is used

by other processes to control Nagios's daemon; defaults to
[localstatedir]/rw/nagios.cmd

use_syslog Specifi es whether Nagios should log messages to syslog as well
as to the Nagios log fi le; defaults to 1 (yes)

state_retention_fi le Specifi es the path to the fi le that stores state information across
shutdowns; defaults to [localstatedir]/retention.dat

retention_update_
interval

Specifi es how often (in seconds) the retention fi le should be
updated; defaults to 60 (seconds)

service_check_timeout Specifi es the number of seconds after which it should a service
check has failed; defaults to 60 (seconds)

host_check_timeout Specifi es the number of seconds after which it should be assumed
that a host check it has failed; defaults to 30 (seconds)

event_handler_timeout Specifi es the number of seconds after which it should an event
handler should be terminated; defaults to 30 (seconds)

Installation and Confi guration

[30]

Option Description
notifi cation_timeout Specifi es the number of seconds after which it should be assumed

that a notifi cation attempt has failed; defaults to 30 (seconds)
enable_embedded_perl Whether an embedded Perl interpreter should be used, if

enabled at compilation; defaults to 1 (yes)
use_embedded_perl_
implicitly

If embedded Perl is supported and enabled, whether all Perl
plugins should be read with the embedded interpreter unless
they specify otherwise; defaults to 1 (yes)

enable_environment_
macros

Whether Nagios should pass all macros to plugins as
environment variables as well; defaults to 1 (yes)

interval_length Specifi es the number of seconds a "unit interval" is; defaults
to 60 which means that an interval is one minute; it is not
recommended that this option is changed in any way as it might
result in undesirable behavior

For a complete list of accepted parameters, please consult the Nagios documentation
on http://nagios.sourceforge.net/docs/3_0/configmain.html.

The Nagios option resource_file defi nes the fi le in which all user variables are to
be stored. This fi le can be used to store additional information that can be accessed
in all object defi nitions. This fi le usually contains sensitive data as it can only be
used in object defi nitions, and it is not possible to read these variables from the web
interface. This makes it possible to hide passwords of various sensitive services from
Nagios administrators who do not have adequate privileges. There can be up to 32
macros, named $USER1$, $USER2$ … $USER32$. Macro defi nition $USER1$ defi nes
the path to the Nagios plugins and is commonly used in check command defi nitions.

Options cfg_file and cfg_dir are used to specify the fi les that should be read for
object defi nitions. The fi rst option specifi es a single fi le to read and the second specifi es
the directory in which all fi les should be read. Each fi le may contain different types of
objects. The following sections describe each type of defi nition that Nagios uses.

One of the fi rst things that needs to be decided is how your Nagios confi guration
should be stored. In order to create a confi guration that is maintainable as your IT
infrastructure changes, it is worth investing some time in planning out how you
want your host defi nitions set up and how they could be most easily placed in a
confi guration fi le structure. Throughout this book, various approaches on how to
make your confi guration maintainable are discussed. It's also recommended that you
set up a small Nagios system to get a better understanding of Nagios confi guration,
before proceeding to larger setups.

Sometimes, it is best to have confi guration grouped into separate directories defi ned
according to the locations that hosts and/or services are in. In other cases, it might be
best to keep defi nitions of all servers with similar functionalities in one directory.

Chapter 2

[31]

A good directory separation makes it much easier to control Nagios confi guration
to, for example, massively disable all objects related to a particular part of the IT
infrastructure. Even though it is recommended to use downtimes, it is sometimes
useful to just remove all entries from Nagios confi guration.

Throughout all confi guration examples in this book, we use a directory structure. A
separate directory is used for each object type and similar objects are grouped within
a single fi le. For example, all command defi nitions are stored in the commands/
subdirectory. All host defi nitions are stored in the hosts/<hostname>.cfg fi les.

 In order for Nagios to read confi guration from these directories, edit your main
Nagios confi guration fi le (/etc/nagios/nagios.cfg), remove all cfg_file and
cfg_dir entries, and add the following ones:

cfg_dir=/etc/nagios/commands
cfg_dir=/etc/nagios/timeperiods
cfg_dir=/etc/nagios/contacts
cfg_dir=/etc/nagios/hosts
cfg_dir=/etc/nagios/services

In order to use the default Nagios plugins, copy the default Nagios command
defi nitions fi le /etc/nagios/objects/commands.cfg to /etc/nagios/commands/
default.cfg.

In addition, please make sure that the following options are set as shown in your
nagios.cfg fi le:

check_external_commands=1
interval_length=60
accept_passive_service_checks=1
accept_passive_host_checks=1

If any of the options are set to a different value, change them, and add them to the
end of the fi le, if they are not currently present in it.

After such changes in the Nagios set up, you can move on to the next sections and
prepare a working confi guration for your Nagios installation.

Macro Definitions
 The ability to use macro defi nitions is one of the key features of Nagios. Macros
offer a lot of fl exibility in object and command defi nitions. Nagios 3 provides custom
macro defi nitions, which gives you a greater possibility to use object templates for
specifying parameters common to a group of similar objects.

Installation and Confi guration

[32]

All command defi nitions can use macros. Macro defi nitions allow parameters
from other objects, such as hosts, services, and contacts, to be referenced so that a
command does not need to have everything passed as an argument. Each macro
invocation begins and ends with a $ sign.

A typical example is a HOSTADDRESS macro, which references the address fi eld from
the host object. All host defi nitions provide the value of the address parameter. For
the following host and command defi nition:

 define host
 {
 host_name somemachine
 address 10.0.0.1
 check_command check-host-alive
 }
 define command
 {
 command_name check-host-alive
 command_line $USER1$/check_ping -H $HOSTADDRESS$
 -w 3000.0,80% -c 5000.0,100% -p 5
 }

this command will be invoked:

/opt/nagios/plugins/check_ping -H 10.0.0.1 -w 3000.0,80% -c
5000.0,100% -p 5

In addition, please note that the USER1 macro was also used and expanded as the
path to Nagios plugins directory. This is a macro defi nition that references data
contained in the fi le that is passed as the resource_file confi guration directive.
Even though it is not necessary for USER1 macro to point to the plugins directory,
all standard command defi nitions that come with Nagios use this macro, and so it is
recommended that you do not change it.

Some of the macro defi nitions are listed in the following table:

Macro Description
HOSTNAME Short, unique name of the host; maps to host_name

directive in the host object
HOSTADDRESS IP or hostname of the host; maps to address directive in

the host object
HOSTDISPLAYNAME Description of the host; maps to alias directive in the

host object
HOSTSTATE Current state of the host (one of UP, DOWN, and

UNREACHABLE)

Chapter 2

[33]

Macro Description
HOSTGROUPNAMES Short names of all host groups a host belongs to, separated

by commas
LASTHOSTCHECK Date and time of last check of the host, in Unix timestamp

for (number of seconds since 1970-01-01)
LASTHOSTSTATE Last known state of the host (one of UP, DOWN, and

UNREACHABLE)
SERVICEDESC Description of the service; maps to the description

directive in the service object
SERVICESTATE Current state of the service (one of OK, WARNING, UNKNOWN,

and CRITICAL)
SERVICEGROUPNAMES Short names of all service groups a service belongs to,

separated by commas
CONTACTNAME Short, unique name of the contact; maps to the contact_

name directive in the contact object
CONTACTALIAS Description of the contact; maps to the alias directive in

the contact object
CONTACTEMAIL E-mail address of the contact; maps to the email directive

in the contact object
CONTACTGROUPNAMES Short names of all contact groups a contact belongs to,

separated by commas

This table is not complete and only covers commonly used macro defi nitions. A
complete list of available macros can be found in the Nagios documentation at
http://nagios.sourceforge.net/docs/3_0/macros.html. Moreover, remember
that all macro defi nitions need to be prefi xed and suffi xed with a $ sign—for
example, $HOSTADDRESS$ maps to the HOSTADDRESS macro defi nition.

 An additional functionality is the on-demand macro defi nitions. These are macros
that are not defi ned, not exported as environment variables, but if found in a
command defi nition, will be parsed and substituted accordingly. These macros
accept one or more arguments inside the macro defi nition name, each passed after a
colon. This is mainly used to read specifi c values not related to the current object. In
order to read the contact email for user jdoe, regardless of who the current contact
person is, the macro would be as follows: $CONTACTEMAIL:jdoe$, which means
getting a CONTACTEMAIL macro defi nition in the context of the jdoe contact.

Nagios 3 also offers custom macro defi nitions. This works in a way that allows
administrators to defi ne additional attributes in each type of object, and the macro
can then be used inside a command. This is used to store additional parameters
related to an object—for example, you can store a MAC address in a host defi nition
and use it in certain types of host checks.

Installation and Confi guration

[34]

It works in such a way that an object has a directive that starts with an underscore
and is written in uppercase. It is referenced in one of the following ways, based on
the object type it is defi ned in:

$_HOST<variable>$ – for directives defi ned within a host object
$_SERVICE<variable>$ – for directives defi ned within a service object
$_CONTACT<variable>$ – for directives defi ned within a contact object

A sample host defi nition that includes an additional directive with a MAC address
would be as follows:

 define host
 {
 host_name somemachine
 address 10.0.0.1
 _MAC 12:12:12:12:12:12

 check_command check-host-by-mac
 }

and a corresponding check command that uses this attribute inside a check:

 define command
 {
 command_name check-host-by-mac
 command_line $USER1$/check_hostmac -H $HOSTADDRESS$ -m
 $_HOSTMAC$
 }

Since Nagios 3, a majority of standard macro defi nitions are exported to check
commands as environment variables. The environment variable names are the same
as macros, but are prefi xed with NAGIOS_—for example, HOSTADDRESS is passed as
the NAGIOS_HOSTADDRESS variable. On-demand variables are not made available.
For security reasons, the $USERn$ variables are also not passed to commands as
environment variables.

Configuring Hosts
 Hosts are objects that describe machines that should be monitored—either physical
hardware or virtual machines. A host consists of a short name, a descriptive name,
and an IP address. The host also tells Nagios when and how the system should be
monitored, as well as who should be contacted with regards to any problems related
to this host. It also specifi es how often the host should be checked, how retrying the
checks should be handled, and how often should a notifi cation about problems be
sent out.

•

•

•

Chapter 2

[35]

A sample defi nition of a host is as follows:

 define host
 {
 host_name linuxbox01
 hostgroups linuxservers
 alias Linux Server 01
 address 10.0.2.1
 check_command check-host-alive
 check_interval 5
 retry_interval 1
 max_check_attempts 5
 check_period 24x7
 contact_groups linux-admins
 notification_interval 30
 notification_period 24x7
 notification_options d,u,r
 }

 This defi nes a Linux box that will use the check-host-alive command to make sure
the box is up and running. The test will be performed every fi ve minutes, and after
fi ve failed tests, it will assume the host is down. If it is down, a notifi cation will be
sent out every 30 minutes.

The following is a table of common directives that can be used to describe hosts.
Items in bold are required while specifying a host.

Option Description
host_name Short, unique name of the host
alias Descriptive name of the host
address IP address or fully qualifi ed domain name of the host;

it is recommended that you use an IP address as otherwise all
tests will fail if the DNS servers are down

parents List of all parent hosts that this host depends on, separated by
commas; this is usually one or more switches and routers that
this host is directly connected to

hostgroups List of all host groups this host should be a member of,
separated by commas

check_command Short name of the command that should be used to test if the
host is alive; if the command returns OK, the host is assumed
to be UP; otherwise it is assumed to be down

Installation and Confi guration

[36]

Option Description
check_interval Specifi es how often a check should be performed, minutes
retry_interval Specifi es how many minutes to wait before re-testing to see if

the host is up
max_check_attempts Specifi es how many times a test needs to report that a host is

down before it is assumed to be down by Nagios
check_period Specifi es the name of the time period that should be used to

determine the times during which tests to see if the host is up
should be performed

contacts List of all contacts that should receive notifi cations related to
host state changes, separated by commas; at least one contact
or contact group needs to be specifi ed for each host

contact_groups List of all contact groups that should receive notifi cations
related to host state changes, separated by comma; at least one
contact or contact group needs to be specifi ed for each host

fi rst_notifi cation_delay Specifi es the number of minutes to wait before fi rst notifi cation
related to a host being down is sent out

notifi cation_interval Specifi es the number of minutes to wait before each next
notifi cation related to a host being down is sent out

notifi cation_period Specifi es the name of the time period during which
notifi cations related to host states should be sent out

notifi cation_options Specifi es which notifi cation types for host states should be
sent, separated by comma; there should be one or more of the
following:
d—host DOWN state
u—host UNREACHABLE state
r—host recovery (UP state)
f—host starts and stops fl apping
s—notify when scheduled downtime starts or ends

For a complete list of accepted parameters, please consult the Nagios documentation
at http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html#host.

By default, Nagios assumes all host states to be up. If the check_command option is
not specifi ed for a host, then it will always be in the up state. When the command
to perform host checks is specifi ed, then the regularly-scheduled checks will take
place and the host state will be monitored using the value of check_interval as the
number of minutes between checks.

Chapter 2

[37]

Nagios uses a soft and hard state logic to handle host states. Therefore, if a host
state has changed from UP to DOWN since the last hard state, then Nagios assumes
that the host is soft state DOWN and performs retries of the test, waiting retry_
interval minutes between each test. Once if the result is the same after max_check_
attempts re-tries, Nagios assumes that the DOWN state is a hard state. The same
mechanisms apply for DOWN to UP transitions.

 The host object parents directive is used to defi ne the topology of the network.
Usually, this directive points to a switch, router or any other device that is
responsible for forwarding network packets. The host is assumed to be unreachable
if the parent host is currently in a hard DOWN state. For example, if a router is
down, then all machines accessed through it are considered unreachable and no tests
will be performed on them.

If your network consists of servers connected via a switch and routers to a different
network, then the parent for all of the servers in the local network, as well as
the router, would be the switch. The parent of the router on the other side of the
link would be the local router. The following diagram shows the actual network
infrastructure and indicates how Nagios hosts should be confi gured in terms of
parents for each element of the network:

nagios 1 ftpserver webserver

switch 1

router 2

switch 2

databaseservermailserver

router 1

nagios 1

switch 1

router 2

switch 2

databaseservermailserver

router 1
ftpserver webserver

Installation and Confi guration

[38]

The actual network topology is shown on the left, and the parent hosts setup for the
machines is shown on the right. Each arrow represents a mapping from a host to
a parent host. There is no need to defi ne a parent for hosts that are directly on the
network with your Nagios server. So in this case, switch1 should not have a parent
host defi ned.

E ven though some devices, such as switches, cannot be easily checked to see if they
are down, it is still a good idea to describe them as a part of your topology. In this
case, you might use a functionality such as scheduled downtime to keep track of
when the device is going to be offl ine, or mark it as DOWN manually. This helps
in determining other problems—Nagios will not scan hosts that have the router
somewhere along the path that is currently scheduled for downtime. This way, you
won't be fl ooded with notifi cations on actually unreachable hosts being down.

Check and notifi cation periods specify the time periods during which checks for host
state and notifi cations are to be performed. These can be specifi ed so that different
hosts can be monitored at different times.

It is also possible to create a setup where information that a host is down is kept, but
nobody is notifi ed about it. This can be done by specifying a notification_period
that will tell Nagios when a notifi cation should be sent out. No notifi cations will be
sent out outside of this time period.

A typical example is a server that is only required during business hours and has a
daily maintenance window between 10 PM and 4 AM. You can set up Nagios so as
to not monitor host availability outside of business hours, or you can make Nagios
monitor it, but without notifying that it is actually down. If monitoring is not done
at all, Nagios will perform fewer operations during this period. In the second case,
it is possible to gather statistics on how much of the maintenance window is used—
which can be used to see if changes to the window need to be made.

N agios allows the grouping of multiple hosts in order to effectively manage them. In
order to do this, Nagios offers host group objects, which are a group of one or more
machines. A host may be a member of more than one host group. Usually, grouping
is done either by the type of machines or by the location they are in.

Each host group has a unique short name that specifi ed along with a descriptive
name, and one or more hosts that are members of this group.

Chapter 2

[39]

Example host group defi nitions that defi ne groups of hosts and a group that
combines both groups, are given as follows:

 define hostgroup
 {
 hostgroup_name linux-servers
 alias Linux servers
 members linuxbox1,linuxbox2
 }

 define hostgroup
 {
 hostgroup_name aix-servers
 alias AIX servers
 members aixbox1,aixbox2
 }

 define hostgroup
 {
 hostgroup_name unix-servers
 alias UNIX servers servers
 hostgroup_members linux-servers,aix-servers
 }

The following table shows the directives that can be used to describe host groups.
Items in bold are required when specifying a host.

Option Description
hostgroup_name Short, unique name of the host group
alias Descriptive name of the host group
members List of all hosts that should be a member of this

group, separated by commas
hostgroup_members List of all other host groups whose members should

also be members of this group, separated by commas

Host groups can also be used when defi ning services or dependencies. For example,
it is possible to tell Nagios that all Linux servers should have their SSH service
monitored and all AIX servers should have a telnet accepting connections.

It is also possible to defi ne dependencies between hosts. They are, in a way, similar
to a parent-host relationship, but dependencies offer more complex confi guration
options. Nagios will only issue host and service checks if all dependant hosts are
currently up. More details on dependencies can be found in Chapter 5.

For the purpose of this book, we will defi ne at least one host in our Nagios
confi guration directory structure.

Installation and Confi guration

[40]

To be able to monitor the local server that the Nagios installation is running on, we
will need to add its defi nition into the /etc/nagios/hosts/localhost.cfg fi le
as follows:

 define host
 {
 host_name localhost
 alias Localhost
 address 127.0.0.1
 check_command check-host-alive
 check_interval 5
 retry_interval 1
 max_check_attempts 5
 check_period 24x7
 contact_groups admins
 notification_interval 60
 notification_period 24x7
 notification_options d,u,r
 }

If you are planning to monitor other servers as well, you will want to add
them—either in a single fi le, or multiple fi les.

Configuring Services
 Services are objects that describe the functionality a particular host is offering. This
can be virtually anything—network servers such as FTP, or resources such as storage
space or CPU load.

A service is always tied to a host that it is running on. It is also identifi ed by its
description, which needs to be unique within a particular host. A service also defi nes
when and how Nagios should check to see if it is running properly, and how to
notify people responsible for this service, if it is not.

A short example of a web server that is defi ned on the linuxbox01 machine created
earlier is as follows:

 define service
 {
 host_name linuxbox01
 service_description WWW
 check_command check_http
 check_interval 10
 check_period 24x7

Chapter 2

[41]

 retry_interval 3
 max_check_attempts 3
 notification_interval 30
 notification_period 24x7
 notification_options w,c,u,r
 contact_groups linux-admins
 }

This defi nition tells Nagios to check that the web server is working correctly every
10 minutes.

The following table shows the common directives that can be used to describe a
service. Items in bold are required when specifying a service.

Option Description
host_name Short name of the host(s) that the service is running on,

separated by comma
hostgroup_name Short name of the host group(s) that the service is running on,

separated by commas
service_description Description of the service, used to uniquely identify a service

running on a host
servicegroups List of all service groups that this service should be a member of,

separated by commas
check_command Short name of the command that should be used to test if the

service is running
check_interval Specifi es how often a check should be performed, in minutes
retry_interval Specifi es how many minutes to wait before re-testing whether

the service is working
max_check_attempts Specifi es how many times a test needs to report that a service is

down before it is assumed to be down by Nagios
check_period Specifi es the name of the time period that should be used to

determine the times during which tests to see if the service is
working should be performed

contacts List of all contacts that should receive notifi cations related to
service state changes, separated by commas; at least one contact
or contact group needs to be specifi ed for each service

contact_groups List of all contacts groups that should receive notifi cations
related to service state changes, separated by commas; at
least one contact or contact group needs to be specifi ed for
each service

Installation and Confi guration

[42]

Option Description
fi rst_notifi cation_
delay

Specifi es the number of minutes before the fi rst notifi cation
related to a service state change is sent out

notifi cation_interval Specifi es the number of minutes before subsequent notifi cations
related to a service not working correctly should be sent out

notifi cation_period Specifi es the name of the time period during which notifi cations
related to service states should be sent out

notifi cation_options Specifi es which notifi cation types for service states should
be sent, separated by commas; these can be one or more of
the following:
w—service WARNING state
u—service UNKNOWN state
c—service CRITICAL state
r—service recovery (back to OK) state
f—host starts and stops fl apping
s—notify when scheduled downtime starts or ends

For a complete list of accepted parameters, refer to the Nagios documentation at
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html#host

Very often, the same service is offered by more than one host. In such cases, it is
possible to specify a service that will be provided by multiple machines, or even
specify host groups for which all hosts will be checked. It is also possible to specify
the hosts for which checks will not be performed—for example, if a service is present
on all hosts in a group except for a specifi c box. To do that, an exclamation mark
needs to be added before a host name or a host group name.

For example, to tell Nagios that SSSH should be checked on all Linux servers shown
except for linux01, as well as on the aix01 machine, a service defi nition similar to
the one shown here can be created:

 define service
 {
 hostgroup_name linux-servers
 host_name !linux01,aix01
 service_description SSH
 check_command check_ssh
 check_interval 10
 check_period 24x7
 retry_interval 2
 max_check_attempts 3
 notification_interval 30
 notification_period 24x7
 notification_options w,c,r
 contact_groups linux-admins
 }

Chapter 2

[43]

Services can be grouped in a similar way to host objects. This can be done to manage
services more conveniently. It also aids in viewing service reports on the Nagios
web interface. Service groups are also used to confi gure dependencies in a more
convenient way.

The following table describes the attributes that can be used to defi ne a group. Items
in bold are required when specifying a service group.

Option Description
servicegroup_name Short, unique name of the service group
alias Descriptive name of the service group
members List of all hosts and services that should be a

member of this group, separated by commas; see
description below

servicegroup_members List of all other service groups whose members should
also be members of this group, separated by commas

The format of the members directive of a service group object is one or more
<host>,<service> pairs.

An example of a service group is shown here:

 define servicegroup
 {
 servicegroup_name databaseservices
 alias All services related to databases
 members linux01,mysql,linux01,pgsql,aix01,db2
 }

This service group consists of the mysql and pgsql services on the linux01 host and
db2 on the aix01 machine. It is uniquely identifi ed by its name, databaseservices.

 It is also possible to specify groups that a service should be member of inside the
service defi nition itself. This can be achieved by specifying all groups that this service
should be a member of. To do this, add a list of all groups in the servicegroups
directive in the service defi nition.

Services may be confi gured to be dependant on one another, similar to how hosts
can. In this case, Nagios will only perform checks on a service if all dependant
services are working correctly. More details on dependencies can be found in
Chapter 5, Advanced Confi guration.

Installation and Confi guration

[44]

Nagios requires that at least one service is defi ned for every host, and requires that
at least one service is defi ned for it to run. That is why we will now create a sample
service in our confi guration directory structure. For this purpose, we will monitor
the secure shell protocol.

In order to check if the SSH server is running on the Nagios installation, we will need
to add its defi nition into the /etc/nagios/hosts/localhost.cfg fi le:

 define service
 {
 host_name localhost
 service_description ssh
 check_command check_ssh
 check_interval 5
 retry_interval 1
 max_check_attempts 3
 check_period 24x7
 contact_groups admins
 notification_interval 60
 notification_period 24x7
 notification_options w,c,u,r
 }

If you are planning on monitoring other services as well, you will want to add them
to the same fi le.

Configuring Commands
 Command defi nitions describe how host/service checks should be done. They
can also defi ne how notifi cations about problems or event handlers should work.
A command defi nition has two parameters—name and command line. The fi rst
parameter is a name that is then used for defi ning checks and notifi cations. The
second parameter is an actual command that will be run, along with all required
parameters for the command.

Commands are used by hosts and services. They defi ne what system command to
execute when making sure a host or service is working properly. A check command
is identifi ed by its unique name.

When used with other object defi nitions, it can also have additional arguments, and
uses an exclamation mark as a delimiter. The commands with parameters have the
following syntax: command_name[!arg1][!arg2][!arg3][...].

Chapter 2

[45]

A command name is often the same as the plugin that it runs, but it can be different.
The command line includes macro defi nitions (such as $HOSTADDRESS$). Check
commands also use macros, $ARG1$, $ARG2$ … $ARG32$, if the check command for
the host or service pass additional arguments.

The following is an example that defi nes a command for trying to ping a host to
make sure it is working properly. It does not use any arguments.

 define command
 {
 command_name check-host-alive
 command_line $USER1$/check_ping -H $HOSTADDRESS$
 -w 3000.0,80% -c 5000.0,100% -p 5
 }

and a very short host defi nition that would use this check command, could be similar
to the one shown here:

 define host
 {
 host_name somemachine
 address 10.0.0.1
 check_command check-host-alive
 }

Such a check is usually done as part of the host checks. This allows Nagios to make
sure that a machine is working properly if it responds to ICMP requests.

Commands allow the passing of arguments as it offers a more fl exible way of
defi ning checks. Therefore, a defi nition accepting parameters would be as follows:

 define command
 {
 command_name check-host-alive-limits
 command_line $USER1$/check_ping -H $HOSTADDRESS$
 -w $ARG1$ -c $ARG2$ -p 5
 }

and the corresponding host defi nition would be:

 define host
 {
 host_name othermachine
 address 10.0.0.2
 check_command check-host-alive-limits!3000.0,80%!5000.0,100%
 }

Installation and Confi guration

[46]

Another example is setting up a check command for a previously-defi ned service:

 define command
 {
 command_name check_http
 command_line $USER1$/check_http -H $HOSTADDRESS$
 }

This check can then be used when defi ning a service to be monitored by Nagios.
Chapter 4, Overview of Nagios Plugins, covers standard Nagios plugins along with
sample command defi nitions. Sample Nagios confi gurations are also included in
sources and installed by the make-config target.

Configuring Time Periods
 Time periods are defi nitions of dates and times during which an action should
be performed or specifi ed people should be notifi ed. They describe date and time
ranges, and can be re-used across various operations.

A time period defi nition includes a name that uniquely identifi es it in Nagios.
It also contains a description, and one or more days or dates along with time spans.

A typical example of a time period would be working hours, which defi nes that a
valid time to perform an action is from Monday to Friday during business hours.
Another defi nition of a time period can be weekends, which means Saturday and
Sunday, all day long.

The following is a sample time period for working hours:

 define timeperiod
 {
 timeperiod_name workinghours
 alias Working Hours, from Monday to Friday
 monday 09:00-17:00
 tuesday 09:00-17:00
 wednesday 09:00-17:00
 thursday 09:00-17:00
 friday 09:00-17:00
 }

This particular example tells Nagios that the acceptable time to perform something
is from Monday to Friday between 9 AM and 5 PM. Each entry in a time period
contains information on a date or weekday. It also contains a range of hours. Nagios
fi rst checks if the current date matches any of the dates specifi ed. If it does, then it
checks if the current time matches the time ranges specifi ed for the date.

Chapter 2

[47]

There are multiple ways of specifying a date. Depending on what type of date it is,
one defi nition might take precedence over another. For example, a defi nition for
December 24th is more important than a generic defi nition that every weekday an
action should be performed between 9 AM and 5 PM.

Possible date types are mentioned here:

Calendar date: For example, 2009-11-01, which means November 1st, year
2009, (Nagios accepts dates in the format YYYY-MM-DD)
Date recurring every year: For example, july 4, which means 4th of July
every year
Specifi c day within a month: For example, day 14, which means the 14 th of
every month
Specifi c weekday, along with an offset in a month: For example, monday
1 september, which means the fi rst Monday in September; monday -1 may
would mean the last Monday in May
Specifi c weekday in all months: For example, monday 1, which means the 1st
Monday of every month
Weekday: For example, monday, which means every Monday

The above list shows all date types in the order at which Nagios ranks them in terms
of importance. This means that a date recurring every year will always be used in
preference to an entry describing what should be done every Monday.

In order to be able to correctly confi gure all objects, we will now create some
standard time periods that will be used in confi guration. The following example
periods will be used in the remaining sections of this chapter, and it is recommended
that you put them in the /etc/nagios/timeperiods/default.cfg fi le:

 define timeperiod
 {
 timeperiod_name workinghours
 alias Working Hours, from Monday to Friday
 monday 09:00-17:00
 tuesday 09:00-17:00
 wednesday 09:00-17:00
 thursday 09:00-17:00
 friday 09:00-17:00
 }

 define timeperiod
 {
 timeperiod_name weekends
 alias Weekends all day long
 saturday 00:00-24:00
 sunday 00:00-24:00
 }

•

•

•

•

•

•

Installation and Confi guration

[48]

 define timeperiod
 {

 timeperiod_name 24x7
 alias 24 hours a day 7 days a week
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 saturday 00:00-24:00
 sunday 00:00-24:00
 }

The last time period is also used by the www service for linuxbox01 host, defi ned
earlier. This way, the web server will be monitored all the time.

Configuring Contacts
 Contacts defi ne people who can either be owners of specifi c machines, or people
who should be contacted in case of problems. Depending on how your organization
chooses to contact people in case of problems, the defi nition of a contact may vary a
lot. A contact consists of a unique name, a descriptive name, and one or more email
addresses and/or pager numbers. Contact defi nitions can also contain additional
data specifi c to how a person can be contacted.

A basic contact defi nition is shown here, and specifi es the unique contact name, an
alias, and contact information. It also specifi es the event types that the person should
receive and time periods during which notifi cations should be sent.

 define contact
 {
 contact_name jdoe
 alias John Doe
 email john.doe@yourcompany.com
 host_notification_period workinghours
 service_notification_period workinghours
 host_notification_options d,u,r
 service_notification_options w,u,c,r
 host_notification_commands host-notify-by-email
 service_notification_commands notify-by-email
 }

Chapter 2

[49]

The following table describes all available directives when defi ning a contact. Items
in bold are required when specifying a contact.

Option Description
contact_name Short, unique name of the contact
alias Descriptive name of the contact; usually this is

the full name of the person
contactgroups List of all contact groups this user should be a

member of, separated by commas
host_notifi cations_enabled Specifi es whether this person should receive

notifi cations regarding host state
host_notifi cation_period Specifi es the name of the time period that should

be used to determine times during which the
person should receive notifi cations regarding the
host state

host_notifi cation_commands Specifi es one or more commands that should
be used to notify the person of a host state,
separated by commas

host_notifi cation_options Specifi es host states that the user should be
notifi ed about, separated by commas; this can be
one or more of the following:
d – host DOWN state
u – host UNREACHABLE state
r – host recovery (UP state)
f – host starts and stops fl apping
s – notify when scheduled downtime starts
or ends

service_notifi cations_enabled Specifi es whether this person should receive
notifi cations regarding the service state

service_notifi cation_period Specifi es name of the time period that should
be used to determine the times during which a
person should receive notifi cations regarding the
service state

Installation and Confi guration

[50]

Option Description
service_notifi cation_commands Specifi es one or more commands that should

be used to notify the person of a service state,
separated by commas

service_notifi cation_options Specifi es the service states that the user should
be notifi ed about, separated by commas; this can
be one or more of the following:
w—service WARNING state
u—service UNKNOWN state
c—service CRITICAL state
r—service recovery (OK state)
f—service starts and stops fl apping
n—person will not receive any service
notifi cations

email Specifi es the email address of the contact
pager Specifi es the pager number of the contact; this

can also be an email to the pager gateway
address1 … address6 An additional six addresses that can be specifi ed

for the contact; these can be anything, based on
how the notifi cation commands will use these
fi elds

can_submit_commands Specifi es whether the user is allowed to execute
commands via the Nagios web interface

retain_status_information Specifi es whether status-related information
about this person is retained across restarts

retain_nonstatus_information Specifi es whether non-status information about
this person is retained across restarts

Contacts are also mapped to users that log into the Nagios web interface. This
means that all operations performed via the interface will be logged as having been
executed by that particular user and the web interface will use access granted to
particular contact objects when evaluating whether an operation should be allowed
or not. The contact_name fi eld from a contact object maps to the user name in the
Nagios web interface.

Contacts can be grouped. Usually, grouping is used to keep a list of which users are
responsible for which tasks, and the group maps to job responsibilities for particular
people. It also makes it possible to defi ne people who should be responsible for
handling problems at specifi c time periods, and Nagios will automatically contact
the right people depending on the time at which a problem has occurred.

Chapter 2

[51]

A sample defi nition of a contact group is as follows:

 define contactgroup
 {
 contactgroup_name linux-admins
 alias Linux Administrators
 members jdoe,asmith
 }

This group is also used when defi ning the linuxbox01 and www service contacts. This
means that both jdoe and asmith will receive information on the status of this host
and service.

The following is a complete list of directives that can be used to describe contact
groups. Items in bold are required while specifying a contact group.

Option Description
contactgroup_name Short, unique name of the contact group
alias Descriptive name of the contact group
members List of all contacts that should be a member of this

group, separated by commas
contactgroup_members List of all other contact groups whose members should

also be members of this group, separated by commas

Members of a contact group can be specifi ed either in the contact group defi nition
or by using the contactgroups directive in a contact defi nition. It is also possible to
combine both methods—some of the members can be specifi ed in the contact group
defi nition, and others can be specifi ed in their contact object defi nition z`.

Contacts are used to specify who should be contacted if the status of one or more
hosts or services changes. Nagios accepts both contacts and contact groups in
its object defi nitions. This allows making either specifi c people or entire groups
responsible for particular machines or services.

It is also possible to specify different people or groups for handling host-related and
service-related problems—for example, hardware administrators for handling host
problems and system administrators for handling service issues.

Installation and Confi guration

[52]

In order to function properly, we need to create at least one contact that will be used
by Nagios, and put this defi nition in the /etc/nagios/contacts/nagiosadmin.
cfg fi le:

 define contact
 {
 contact_name nagiosadmin
 contactgroups admins
 alias Nagios administrator
 email administrator@yourcompany.com
 host_notification_period workinghours
 service_notification_period workinghours
 host_notification_options d,u,r
 service_notification_options w,u,c,r
 host_notification_commands host-notify-by-email
 service_notification_commands notify-by-email
 }

We also need to defi ne the admins group in the /etc/nagios/contacts
/groups.cfg fi le:

 define contactgroup
 {
 contactgroup_name admins
 alias System administrators
 }

If you are not very familiar with Nagios, it is recommended that you leave
the contact's name as nagiosadmin, as this will also be the user for all web
interface operations.

Templates and Object Inheritance
In order to allow the fl exible confi guration of machines, Nagios offers a powerful
inheritance engine. The main concept is that administrators can set up templates
that defi ne common parameters, and re-use these templates in actual host or service
defi nitions. The mechanism even offers the possibility to create templates that inherit
parameters from other templates.

 This mechanism works in a way where templates are plain Nagios objects that
specify the register directive and set it to 0. This means that they will not be
registered as an actual host or service to monitor. Objects that inherit parameters
from a template or another host should have a use directive pointing to the short
name of the template object they are using.

Chapter 2

[53]

When defi ning a template, its name is always specifi ed using the name directive. This
is slightly different to how typical hosts and services are registered, as they require
the host_name and/or service_description parameters.

 Inheritance can be used to defi ne a template for basic host checks, with only basic
parameters such as IP address being defi ned for each particular host. For example:

 define host
 {
 name generic-server

 check_command check-host-alive
 check_interval 5
 retry_interval 1
 max_check_attempts 5
 check_period 24x7
 notification_interval 30
 notification_period 24x7
 notification_options d,u,r
 register 0

 }

 define host
 {
 use generic-server

 name linuxbox01
 alias Linux Server 01
 address 10.0.2.1
 contact_groups linux-admins
 }

Version 3 of Nagios also introduces inheriting from multiple templates. To do this,
simply put multiple names in the use directive, separated by commas. This allows
the host to use several templates, which defi ne parts or all directives. In case multiple
templates specify the same parameters, the value from the fi rst template specifying it
will be used. For example:

 define service
 {
 name generic-service

 check_interval 10
 retry_interval 2
 max_check_attempts 3
 check_period 24x7
 register 0

 }

Installation and Confi guration

[54]

 define service
 {
 host_name workinghours-service

 check_period workinghours
 notification_interval 30
 notification_period workinghours
 notification_options w,c,u,r
 register 0

 }

 define service
 {
 use workinghours-service,generic-service

 contact_groups linux-admins
 host_name linuxbox01
 service_description SSH
 check_command check_ssh
 }

In this case, values from both templates will be used. The value of workinghours
will be used for the check_period directive as this directive was fi rst specifi ed in
the workinghours-service template. Changing the order in the use directive to
generic-service,workinghours-service would cause value of the check_period
parameter to be 24x7.

Nagios also accepts creating multiple levels of templates. For example, you can set
up a generic service template, and inherit it to create additional templates for various
types of checks such as local services, resource sensitive checks, and templates for
passive-only checks.

Let's consider the following objects and template structures:

define host
{
 host_name linuxserver1
 use generic-linux,template-chicago

}

define host
{
 register 0
 name generic-linux
 use generic-server

}

Chapter 2

[55]

define host
{
 register 0
 name generic-server
 use generic-host

}

define host
{
 register 0
 name template-chicago
 use contacts-chicago,misc-chicago

}

The following illustration shows how Nagios will search for values for all directives.

linuxserver1

1

2

3

4

5
6

template-chicagogeneric-linux

generic-server

generic-host

contacts-chicago misc-chicago

Legend :

Inheritance tree

Evaluation order

When looking for parameters, Nagios will fi rst look for the value in the
linuxserver1 object defi nition. Next, it will use the following templates, in this
order: generic-linux, generic-server, generic-host, template-chicago,
contacts-chicago, and misc-chicago in the end.

I t is also possible to set up host or service dependencies that will be inherited from a
template. In this case, the dependant hosts or services can't be templates themselves,
and need to be registered as objects that will be monitored by the Nagios daemon.

Installation and Confi guration

[56]

Introduction to Notifications
N otifi cations are the way by which Nagios lets people know that something is either
wrong or has returned to the normal way of operations. They are not objects on their
own, but provide very important functionality in Nagios. Confi guring notifi cations
correctly might seem a bit tricky in the beginning.

When and how notifi cations are sent out is confi gured as part of contact
confi guration. Each contact has confi guration directives on when notifi cations can be
sent out, and how he or she should be contacted. Contacts also contain information
about contact details—telephone number, email address, Jabber/MSN address, and
so on. Each host and service is confi gured for when the information about it should
be sent, and who should be contacted. Nagios then combines all of this information
in order to notify people of the changes in status.

Notifi cations may be sent out in one of the following situations:

 1. The host has changed its state to DOWN or UNREACHABLE state; notifi cation is
sent out after first_notification_delay number of minutes specifi ed in
the corresponding host object

2. The host remains in DOWN or UNREACHABLE state; notifi cation is sent out every
notification_interval number of minutes specifi ed in the corresponding
host object

3. Host recovers to an UP state; notifi cation is sent out immediately and only once
 4. Host starts or stops fl apping; notifi cation is sent out immediately
5. Host remains fl apping; notifi cation is sent out every notification_

interval number of minutes specifi ed in the corresponding host object
6. Service has changed its state to WARNING, CRITICAL or UNKNOWN state;

notifi cation is sent out after first_notification_delay number of minutes
specifi ed in the corresponding service object

7. Service remains in WARNING, CRITICAL or UNKNOWN state; notifi cation is sent
out every notification_interval number of minutes specifi ed in the
corresponding service object

8. Service recovers to an OK state; notifi cation is sent out immediately
and only once

9. Service starts or stops fl apping; notifi cation is sent out immediately
10. Service remains fl apping; notifi cation is sent out every notification_

interval number of minutes specifi ed in the corresponding service object

If one of these conditions occurs, Nagios starts evaluating whether information about
it should be sent out and to whom.

Chapter 2

[57]

First of all, the current date and time is checked against the notifi cation time period.
The time period is taken from the notification_timeperiod fi eld from the current
host or service defi nition. Only if the time period includes current time, will the
notifi cation be sent out.

Next, a list of users based on the contacts and contact_groups fi elds is created.
A complete list of users is made based on all members of all groups, and included
groups, as well as all the contacts directly bound to the current host or service.

Each of the matched users is checked to see whether he or she should be notifi ed
about the current event. In this case, each user's time period is also checked to see if
it includes the current date and time. The directive host_notification_period or
service_notification_period is used depending on whether the notifi cation is
for the host or the service.

For host notifi cations,the host_notification_options directive for each contact
is also used to determine whether that particular person should be contacted—for
example, different users might be contacted about an unreachable host than those
contacted if the host is actually down. For service notifi cations, the service_
notification_options parameter is used to check every user if he or she should be
notifi ed about this issue. The section on hosts and services confi guration describes
what values these directives take.

If all of these criteria have been met, Nagios will send a notifi cation to this user.
It will now use commands specifi ed in the host_notification_commands and
service_notification_commands directives.

 It is possible to specify multiple commands that will be used for notifi cations. So it is
possible to set up Nagios such that it sends both an email as well as a message on an
instant messaging system.

 Nagios also offers escalations that allow emails to be sent to other people when a
problem remains unresolved for too long. This can be used to propagate problems to
higher management, or to teams that might be affected by unresolved problems. It is
a very powerful mechanism and is split between host- and service-based escalations.
This functionality is described in more detail in Chapter 6, Notifi cations and Events.

Installation and Confi guration

[58]

Summary
Our Nagios setup is now complete and is ready to be started! We took the road
from source code into a working application. We have also confi gured it so that it
monitors the machine it is running on from scratch, and it took very little time and
effort to do so.

Our Nagios installation now uses three directories—/opt/nagios for binaries, /etc/
nagios for confi guration, and /var/nagios for storing data. All object defi nitions
are stored in a categorized way as the subdirectories /etc/nagios. This allows much
easier management of Nagios objects.

We have confi gured the server that Nagios is running on, to be monitored. You
might want to add more servers just to see how they works.

We told Nagios to monitor only the SSH server. But in all proability, you will also
want to monitor other things such as a web server or email.

Chapter 4, Overview of Nagios Plugins, will help when it comes to setting up various
types of checks. Make sure to read the /etc/nagios/commands/default.cfg fi le to
see what commands Nagios already came confi gured with. Sometimes, it will also be
needed to set up your own check commands—either custom scripts, or using Nagios
plugins in a different way from the default command set.

You would also want to set up other users if you are working as part of a larger
team. It will defi nitely help everyone in your team if you tell Nagios who is taking
care of which parts of the infrastructure!

All that should be a good start for making sure everything works fi ne in your
company. Of course, confi guring Nagios for your needs might take a lot of time, but
starting with monitoring just the essentials is a good thing. You will learn how it
works and increase the number of monitorables over time.

The next step is to set up the web interface so that you will be able to see things from
your favorite browser or even put on your desktop. The next chapter provides the
essential information on how to install, confi gure, and use it.

Using the Nagios Web
Interface

Your Nagios system is now up and running. It will also send out notifi cations to
people if something goes wrong. What we need now, is a way to be able to view
current and historical information on which hosts and services are failing. Nagios
offers just that! It comes with a web interface that can be used to view the status of all
hosts and services, read logs, and generate reports. And that is just a small part of
its functionality.

Using any browser, you can access almost any information Nagios keeps—statuses,
performance data, history, and logs. With just a few clicks, you can check if all of
your hosts and services are working correctly. The interface also offers the ability
to change parts of a confi guration on the fl y. This means that you can, for example,
disable host or service checks in just a few clicks. Nagios web pages are usually
password protected. In many cases, they are also only accessible from within a
trusted IP address—for example, only from the Intranet or a company VPN.

The ability to check the status of all hosts and services is a very valuable
functionality. Usually, a notifi cation that something is wrong should just be a trigger
to investigate the problem. Being able to see the big picture via various views of the
web interface is very useful. You can use different detailed views and see what is not
working properly. Quick access to such information from all monitored machines in
your network is a blessing in case of any problems. You can clearly see which hosts
and services are working as they should, and which ones aren't.

Nagios can also show you a tree of your infrastructure that includes parent host
mappings. This is a great way to see which machines are down, and which are
assumed to be unreachable. In larger systems, where there are a lot of dependencies,
being able to see this clearly is very useful.

Using the Nagios Web Interface

[60]

The web interface also uses Nagios object structure to handle access rights. Nagios
web interface is commonly confi gured in such a way that there is a single user who has
access to all information. It is also possible to set up additional users based on actual
contact names. These users will have access to only the hosts and services for which
they are the people to be contacted. This way, the administrator of specifi c machines or
host groups can log into the site and see only what he or she is authorized to see.

Setting up the Web Interface
The Nagios web interface is part of the main Nagios sources and binary distributions.
Therefore, if you installed Nagios, you also have the web interface fi les.
The only thing you need now is a web server—in our case, it will be Apache 2
(visit http://httpd.apache.org/).

The web interface uses CGI mechanisms to work, as this is the most-commonly
offered way to run applications. It also allows a more fl exible set-up in terms of
security as CGI binaries can be run as a different user than the one the web server is
running as. It also uses additional fi les such as many static HTML pages, CSS,
and images.

As described in the previous chapter, Nagios CGI scripts need to be able to write to
the Nagios external command pipe. If you have followed the installation instructions
provided in Chapter 2, Installation and Confi guration, your Apache server already has
the correct access rights. If you set up Nagios on your own, you need to make sure
your web server can write to the Nagios pipe. Please check your external command
pipe permissions and make sure—for our installation parameters—that the fi le is
called /var/nagios/rw/nagios.cmd, and it is writable by the nagioscmd group. It
needs to be writable by the user your web server is running as; so, it is best to add
your web server user to a group owning the fi le.

Configuring the Web Server
 By default, all Nagios HTML and other static fi les that are used by the web interface
are copied into the share subdirectory of the Nagios installation, and all CGI
binaries go into the sbin subdirectory. Assuming that Nagios has been confi gured
using the default directories used in the previous chapter, these would be /opt/
nagios/share and /opt/nagios/sbin respectively.

Chapter 3

[61]

If you installed Nagios from a binary distribution, it might have confi gured the web
server so that it is accessible. In that case, the package management should have
asked you for a password to access the Nagios Web interface. You should start by
trying to access http://127.0.0.1/nagios/ from the machine that has Nagios
installed. It should prompt you for a username and password. The main Nagios
administrator is called nagiosadmin, and the password will be the one you supplied
during the package installation. In such a case, you should skip this section and
proceed to the next ones that describe how Nagios's web interface works.

If you have followed the steps in the previous chapter to install Nagios, then all that's
needed is to confi gure Apache to use proper aliasing and to create a valid user that
will be able to access Nagios.

The following instructions assume that your Apache confi guration is under
/etc/apache2, and that your web server will read all confi guration fi les under
/etc/apache2/conf.d. If your paths are different, please modify them in the
following examples, accordingly.

The fi rst thing that we will do is create a confi guration fi le called /etc/apache2/
conf.d/nagios.

We will need to add an alias to the /nagios URL that will point to /opt/nagios/
share and the CGI scripts under /nagios/cgi-bin URL to /opt/nagios/sbin,
as follows:

ScriptAlias /nagios/cgi-bin /opt/nagios/sbin
Alias /nagios /opt/nagios/share

 Next, we need to set up password protection for the Nagios web interface. We
can also limit IP addresses from being able to access the site. To do this, add the
following directives to the /etc/apache2/conf.d/nagios fi le:

<DirectoryMatch /opt/nagios/share>
 Options FollowSymLinks
 AllowOverride AuthConfig
 Order Allow,Deny
 Allow From All
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /etc/nagios/htpasswd.users
 AuthGroupFile /etc/nagios/htpasswd.groups
 require valid-user
</DirectoryMatch>

Using the Nagios Web Interface

[62]

<DirectoryMatch /opt/nagios/sbin>
 Options ExecCGI
 AllowOverride AuthConfig
 Order Allow,Deny
 Allow From All
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /etc/nagios/htpasswd.users
 AuthGroupFile /etc/nagios/htpasswd.groups
 require valid-user
</DirectoryMatch>

If you want to limit the hosts that will be able to access the Nagios web interface, you
can replace the Order and Allow directives in both of the DirectoryMatch
defi nitions as follows:

Order Deny,Allow
Deny From All
Allow From 192.168.0.0/16

This will only allow access to the Nagios web site from IP addresses starting
with 192.168.

The fi nal step is to create the fi les that will be used for authorization.

We will need to run the following commands to set these up:

cp /dev/null /etc/nagios/htpasswd.groups
htpasswd -bc /etc/nagios/htpasswd.users nagiosadmin yourpassword
Adding password for user nagiosadmin

Make sure you replace yourpassword with the actual password you want to use.

 The last thing that needs to be done is to restart Apache by invoking:

/etc/init.d/apache restart

On some operating systems, such as RedHat Linux, this script might be called /etc/
rc.d/init.d/httpd or /etc/init.d/httpd.

Accessing the Web Interface
 After restarting the web server, we can now access Nagios Web interface by going
to URL http://127.0.0.1/nagios/ from that machine. This will prompt for a
username and password—these are the ones used in the example above. After a
successful login, you should see a welcome screen similar to the following one:

Chapter 3

[63]

Troubleshooting
T here might be cases where accessing the Nagios URL shows an error instead of
the welcome screen. If this happens, it can be due to various reasons, for example,
because the web server has not started, or the Nagios related confi guration setup is
incorrect, or permissions on the Nagios directories are incorrect.

The fi rst thing that we should check is whether Apache is working properly. We
can manually run the check_http plugin from Nagios. If the web server is up and
running, we should see something similar to what is shown here:

/opt/nagios/plugins/check_http -H 127.0.0.1
HTTP OK HTTP/1.1 200 OK - 296 bytes in 0.006 seconds

Using the Nagios Web Interface

[64]

and if Apache is not running currently, the plugin will report an error similar to the
following one:

/opt/nagios/plugins/check_http -H 127.0.0.1
HTTP CRITICAL - Unable to open TCP socket

If it was stopped, start it by running /etc/init.d/apache2 start.

The next step is to check whether the http://127.0.0.1/nagios/ URL is working
properly. We can also use the same plugin for this. The -u argument can specify the
exact link to access, and -a allows you to specify the username and password to be
authorized. It is passed in the form of <username>:<password>.

/opt/nagios/plugins/check_http -H 127.0.0.1 \
 –u /nagios/ -a nagiosadmin:<yourpassword>
HTTP OK HTTP/1.1 200 OK - 979 bytes in 0.019 seconds

We can also check the actual CGI scripts by passing a URL to one of the scripts:

/opt/nagios/plugins/check_http -H 127.0.0.1 \
 –u /nagios/cgi-bin/tac.cgi -a nagiosadmin:<yourpassword>
HTTP OK HTTP/1.1 200 OK - 979 bytes in 0.019 seconds

If any of these checks return any HTTP code other than 200, it means that this is
the problem.

I f the code is 500, it means that Apache is not confi gured correctly. In such cases, the
Apache error log contains useful information about any potential problems. On most
systems, including Ubuntu Linux, the fi le name of the log is /var/log/apache2/
error.log. An example entry in the error log could be:

[error] [client 127.0.0.1] need AuthName: /nagios/cgi-bin/tac.cgi

In this particular case, the problem is the missing AuthName directive for CGI scripts.

Internal errors can usually be resolved by making sure that the Nagios-related
Apache confi guration is correct. If you followed the installation steps from this
chapter and the previous one, Apache confi guration should be exactly the same as in
the examples above.

If this does not help, it is worth checking other parts of the confi guration, especially
the ones related to virtual hosts and CGI confi guration. Commenting out parts of
the confi guration can help in determining which parts of the confi guration are
causing problems.

Chapter 3

[65]

Another possibility is that either the check for /nagios/ or the check for the /
nagios/cgi-bin/tac.cgi URL returned code 404. This code means that the page
was not found. In this case, please make sure that Apache is confi gured according to
the previous steps.

If it is, then it's a good idea to enable more verbose debugging to a custom fi le. The
following Apache 2 directives can be added either to /etc/apache2/conf.d/nagios
or to any other fi le in Apache confi guration:

LogFormat "%h %l %u \"%r\" %>s %b %{Host}e %f" debuglog
CustomLog /var/log/apache2/access-debug.log debuglog

The fi rst entry defi nes a custom logging format that also logs exact paths to fi les. The
second one enables logging with this format to a dedicated fi le. An example entry in
such a log would be:

127.0.0.1 - - "GET /nagios/ HTTP/1.1" 404 481 127.0.0.1 /var/www/
nagios

This log entry tells us that http://127.0.0.1/nagios/ was incorrectly expanded
to the /var/www/nagios directory. In this case, the Alias directive describing the
/nagios/ prefi x is missing. Making sure that actual confi guration matches the one
provided in the previous section will also resolve this issue.

Another error that you can get is 403, which indicates that Apache was unable to
access either CGI scripts in /opt/nagios/sbin, or Nagios static pages in /opt/
nagios/share. In this case, you need to make sure that these directories are readable
by the user Apache is running as.

The error might also be related to the directories above—/opt/nagios or /opt. One
of these might also be inaccessible to the user Apache is running as, which will also
cause the same error to occur.

I f you run into any other problems, it is best to start with making sure that Nagios
related confi guration matches the examples from the previous section. It is also a
good idea to reduce the number of enabled features and virtual hosts in your
Apache confi guration.

Using the Nagios Web Interface

[66]

Using the Web Interface
N agios Web interface always offers a menu in the left frame, while current
information is shown in the remaining area. You can easily access all views from the
left-side menu.

In case you want to replace the standard Nagios welcome screen with your own,
all you need to do is change the /opt/nagios/share/main.html fi le. As this
page is shown to everyone after they log in correctly, it can be used to provide
administrators with some guidelines on how Nagios monitoring is used within your
company, and what should be done in certain circumstances. It can also be used to
defi ne links to commonly-checked hosts and commonly-accessed services.

It is also possible to extend the left side menu, which is defi ned in the /opt/nagios/
share/side.html fi le. This way, quick links can be added to the menu and/or
unused functionality can be removed from it.

Henceforth in this chapter, we will use confi guration that is far more complex
than the one we created in the previous chapter. This will allow us to see more
functionality in Nagios and its web interface.

Tactical Overview
N agios offers a panel that shows the overall status of all of the hosts, services and
other features. It can be accessed by clicking on the Tactical Overview link in the
left-side menu. You can use this page to assess number of hosts and services failing,
fl apping and pending checks. It also shows how many hosts are unreachable due to
other hosts being down.

Chapter 3

[67]

The following is a screenshot of the Tactical Overview page:

The tactical Overview presents overall information on Nagios and its monitoring.
The page provides information about host and service conditions. It shows how
many hosts and services are in which status. It also shows if any hosts or services
have their checks, notifi cations, or event handlers disabled.

Using the Nagios Web Interface

[68]

Performance information is shown in the top right-hand corner. This shows details
of the checks that have been performed. It also reports latency while performing the
checks and the average time that it takes to perform these checks. These values are
quite important because if there are too many checks scheduled, Nagios might not be
able to perform some of them. Usually, you should tweak your Nagios installation in
cases where latency is getting larger than a couple of seconds.

Following this information is a status showing host and service health. This contains
bars showing the number of hosts and services that are in an OK state. If all of the
services are currently working properly, the bar is green across its full width. If some
hosts or services are not working, the color of the bar will change to yellow or
red, accordingly.

The Tactical overview can also be used to view hosts or services list fi ltered on
specifi c criteria. Clicking on any status count text in Network Outages, Hosts or the
Services section will show a list of hosts or services with the selected status. If we
click on the text 19 Ok in the Services section, it will show a list of all of the services
with a status of OK.

Si milarly, if any object is fl agged as red in the Monitoring Features section, it is
possible to go to a list of hosts or services with the selected symptoms. For example,
if we click on 3 Services Disabled in the Notifi cations section, a list of these three
services will be displayed.

Status map
Na gios allows the display of a graphical map of host parent-child relations, along
with their statuses. This can be accessed by clicking on the Status Map link on the
left-side menu. This information can be used to keep track of hosts and their statuses.
In this way, you can see how a host being down causes other parts of your network
to be unreachable.

Chapter 3

[69]

The following is a screenshot of a status page:

The status page can be shown in many ways. The preceding image shows a circular
tree of all hosts. It is also possible to show a top-down tree of all hosts.

Fur ther, it is possible to show all your machines in a 3D environment using Virtual
Reality Modeling Language (VRML). This can be accessed by clicking on the 3-D
Status Map link on the left-side menu.

Managing Hosts
Nag ios offers several pages that can be used to view and modify host information.
The Nagios web interface offers a view of all defi ned hosts, their statuses, and basic
information. These can be used to determine the status of hosts. Hostgroup-related
views also show the status of services bound to hosts. Host information pages also
allows the modifi cation of several parameters related to host confi guration.

Using the Nagios Web Interface

[70]

Status
Nag ios offers a panel that shows all hosts along with their statuses. It can be accessed
by clicking on the Host Detail link on the left-side menu.

The following is a screenshot reporting six hosts, all of which are currently UP:

The page shows a list of all hosts, their statuses, and basic information on when
the host was last checked and when the status was last changed. It also shows the
information text response from the check. The sort order of the table can be changed
by using the arrow buttons next to each column's header.

Similar to the Tactical Overview page, the totals on the top of the page can be used
to fi lter hosts or services to only the ones with a specifi c status. After clicking on any
status type in the Host Status Totals table, the list of hosts is fi ltered to the show
only the ones that currently have the selected status. Clicking on any status type in
Service Status Totals will show a list of services fi ltered to the ones that currently
have the specifi ed status.

Chapter 3

[71]

There is also a quick jump menu on the left that allows you to move to a list of all of
the services and views related to the host groups.

Nagios also offers three views that show the status of all of the host groups. One
such view is the status grid, which shows host groups along with the hosts in them
and each service for that host, along with its status. This view can be accessed by
clicking on the Hostgroup Grid link on the left-side menu.

The following is a screenshot of such a status grid view:

As with the previous view, clicking on the Host Status Totals or Service Status
Totals will cause Nagios to fi lter the results according to the selected criteria. The
page also contains a quick jump menu on the left that can be used to change the
currently-selected view.

Clicking on any host group description will show a list of all of the services on all
hosts within that group.

Using the Nagios Web Interface

[72]

Clicking on a host group name, which is specifi ed in brackets, will display a host
group menu that allows you to modify attributes for all hosts or services related to
that host group.

Clicking on a host name in any host or service related view will cause Nagios to
show detailed information about the chosen host.

Host Information
Click ing on a host in any view of the web interface will take you to the host
information page. This page contains the details of the current host status, a list of
comments, and a command panel that allows you to modify the host confi guration,
schedule checks, or send custom notifi cations.

The following is a screenshot of the host information page:

Chapter 3

[73]

This page contains detailed information of the selected host. It shows the current
status and the host checks that have been, or will be, performed. It also contains
information on which functionality is enabled or disabled for specifi ed host, whether
the host is fl apping along with fl apping threshold value.

The menu on the right can be used to perform operations related to this host. It
allows you to toggle whether active checks should be performed, whether Nagios
should accept passive check results, and whether it should detect fl apping. You can
also confi gure Nagios to obsess over a host or send notifi cations and events. It is also
possible to create options for all of the services bound to this host. There is also an
option to schedule checks for a host or all services bound to this host. You can also
submit passive check results over the web interface.

T he host information page also allows the reading and modifi cation of all of the
comments related to this host. All current comments are listed under the Host
Comments section. Clicking on trash icon in the Actions column will delete a
comment. You can also delete all comments and add a new comment bound to
this host.

Managing Services
S imilar to host-related information and operations, Nagios has panels for working
with services. This consists of several service and service group views, in addition to
being able to view detailed information on each service and modify the parameters
of the service.

Status
The N agios web interface offers a view of all defi ned services, their statuses, and
basic information about the services. This information can be accessed by clicking on
the Service Detail link on the left-side menu.

Using the Nagios Web Interface

[74]

The following screenshot reports 19 services, all of which are currently
working correctly:

The main part of the page is a table showing all services, along with their statuses
and detailed information on the output from the checks carried out against
these services.

Se rvices are grouped by the hosts they are confi gured for, and they are sorted
by service description. This is the default order by which the table is sorted. It is
possible to sort the table according to your needs by clicking on the arrows in any
column in the header of the table.

Above the table, there are total values for each host and service status. These totals
can also be used to fi lter the service table to show only specifi c statuses or services
for a host with a specifi c status.

Chapter 3

[75]

The page also contains a quick menu that allows navigation to commonly-used
views. This allows you to jump to the history and notifi cation logs, as well as
navigate to a list of all hosts along with their detailed statuses.

Clicking on any host will take you to a host information page for the selected object.
Similarly, clicking on any service will show a detailed information page for that object.

Another interesting view is the summary of all of the services specifi ed for each
service group. The following is a screenshot of this page:

This page shows each Service Group, along with the count of all services for each
status. The page contains a Service Status Summary, which is the summary of all
of the services that are members of a specifi c service group. It also shows a Host
Status Summary, which is the summary of all the hosts that have at least one
service confi gured.

Clicking on any status summary column will show a list of all of the services in that
group, along with detailed information about these sevices. Clicking on a service
group will show an overview of the services split into individual hosts.

Service Information
Cli cking on a service in any view of the web interface will take you to the service
information page. This page contains details on the current service status, a
list of comments, and a command panel that allows you to modify the service
confi guration, schedule checks, or send custom notifi cations.

Using the Nagios Web Interface

[76]

The following is a screenshot of this page:

The main table on the left shows the detailed information for the service—its
current status, output from the checks carried out against the service, and detailed
information on the last and next planned check. The page also shows whether the
service is fl apping along with the fl apping, threshold, and when the last notifi cation
was sent out.

The menu on the right allows you to change whether checks should be performed,
notifi cations and events should be done, and whether Nagios should obsess over this
service. There is also an option to schedule when the next check is to be performed.

At the bottom of the page there is a Service Comments section that contains a table
that shows all existing comments related to this service, similar to host information
page. It is possible to add or delete a single comment or all comments related to
this service, as you can with host comments.

Chapter 3

[77]

Man aging Downtimes
Nagios allows you to use the web interface to manage scheduled downtimes for
hosts and services. This includes listing, adding, and deleting downtimes for both
hosts and services.

Downtimes Status
Nagi os's web interface allows you to list all scheduled downtimes. This page can be
accessed by clicking on the Downtime link on the left-side menu. The following is an
example of this page:

The page consists of two pages, which all scheduled downtimes, separately for hosts
and services. You can delete a downtime by clicking the 'trash' icon on the right in
the row that describes that particular downtime entry.

Using the Nagios Web Interface

[78]

Downt imes can be triggered by other downtimes. When a host downtime is
scheduled, Nagios automatically adds downtimes for all child hosts. For example, in
the current confi guration, if host router has a downtime scheduled, then router-
aster will also have the same downtime as it will be unreachable during this period.
Such downtimes are indicated by the Downtime ID and Trigger ID columns. In the
example above, the Internet IN and Internet OUT services are scheduled to be
down as the router-aster host will also be down. We can see that the router-
aster host downtime has its Downtime ID set to 2, and both service downtimes
have Trigger ID also set to 2.

Scheduling Downtimes
In or der to schedule a downtime, open a host or service information page and use
the Schedule downtime for this host option or the Schedule downtime for this
service option. It is also possible to use the Downtime page to schedule downtimes
directly. In this case, you will need to know the host name and service description of
the service you want to disable, as Nagios will not fi ll these in automatically.

The following is a screenshot of scheduling downtime for a service:

Chapter 3

[79]

The form consists of Host and Service Name, Comment, and an option list to choose
a downtime that triggered this host/service to also be down. When specifying the
period during which the downtime should be scheduled, it is possible to enter Start
Time and End Time or use the Duration fi eld. If you want to specify how long the
service will be offl ine, choose Flexible in the Type fi eld. Otherwise, choose Fixed to
specify the start and end time.

Scheduling downtime for a host is very similar—the only difference being that the
Service fi eld is missing, and the Child Hosts option list is added to specify how child
hosts should be handled.

Nagios can automatically schedule downtimes for child hosts. When scheduling
a host downtime, an additional option is present to indicate whether child hosts
should also be scheduled for downtime and be triggered by this downtime.

Manag ing Comments
Nagios allows you to enter one or more comments for a host or a service. These
can be anything from 'Third machine from top on the left shelf' to 'Reset button not
working'. Nagios also adds comments automatically in several cases. For example,
when an object is scheduled for downtime, a comment is created stating this.

Comments associated with a specifi c object are shown on the host or service detail
information pages(as appropriate). Comments can also be added and removed via
these pages.

Nagios also offers a page that allows you to manage comments for all hosts and
services, similar to how you manage scheduled downtimes. This page allows
you to add or delete comments for all hosts. You can also navigate to the detailed
information page for a host or service by clicking on the object's name. This page can
be accessed via the Comments link on the left-side menu.

Using the Nagios Web Interface

[80]

The following is a screenshot of the comments page:

Clicking on the 'trash' icon next to any comment will delete it. Adding a comment
can be done by clicking on a host or a service name from the detailed information
page, or by clicking on the comments table. In the latter case, you will need to specify
the host name and the service description yourself in the Add Comment form.

Nagios Information
The web interface allows you to check the Nagios daemon status along with general
information on the enabled and disabled features. It also allows you to check
performance information related to Nagios. This can be used to make sure that
Nagios is not overloaded with checks to perform, and see how much time checks
take, and how often they're performed.

Chapter 3

[81]

Process Information
The Nagios Process Information page shows generic information on Nagios
processes. It also allows you to perform several actions via the Process Commands
panel. This page can be accessed via the Process Info link on the left-side menu.

The following is a screenshot of this page:

Using the Nagios Web Interface

[82]

This page contains information on the Nagios version, its process ID, status, and
log rotation. It also shows whether the checks, notifi cations, and other functions
are enabled.

The menu on the right also allows you to stop and restart the Nagios daemon. It also
allows you to enable or disable the performance of checks and sending notifi cations.
Flap detection and performance data processing can also be turned on or off from
this page.

Performance Information
The Prog ram-Wide Performance Information page shows information about the
performance and load of Nagios process. This page can be accessed via the Process
Info link on the left-side menu.

The following is a screenshot of this page:

Chapter 3

[83]

This page contains information on a number of host and service checks performed
within various periods of time, as well as the number of reports received from
external applications. It also shows the number of commands received from external
applications, which is usually the web interface.

This page also contains information on average check execution times, as well as
latencies. This information is useful in determining whether the Nagios process
is overloaded or not. If the average latency is above 60 seconds, or is constantly
increasing, then this means Nagios is not able to perform all of the specifi ed checks.
In such cases, it is a good idea to increase the check or notifi cation intervals, so that
the number of commands Nagios runs in any given period of time is lower.

Reports
 One of th e most important features of the Web interface is the ability to create
reports. Many larger companies need reports to allow them to take decisions at
a higher management level. Reporting functionality can also be used to browse
historical notifi cations to alerts, and to see complete logs for a specifi ed period.

Nagios offers the following types of reports:

Trend reporting for host or service: Shows the state changes history for a
single object along with the status information from performed checks
Availability report for hosts or services: Shows how much time an object
has spent in a particular status; can report on all objects or a single object; can
also generate reports for host groups and service groups

Alert histogram: Shows the number of alerts that have occurred over a
period of time for a particular host or service

In addition, Nagios can report a history of alerts, notifi cations, or all events. This
can be considered as reading Nagios logs in a more convenient way. It allows you
to read the history either for all hosts and/or services, or for a specifi c object. The
reports are also formatted in a more readable way than the raw logs.

Generating most reports begins with choosing the report type, then the object type—
host, host group, service, or service group. Then either all objects, or a specifi c object,
is chosen for which a report is generated.

Next, you need to specify the period for which a report, should be generated, along
with additional options that can depend on the type of report being be generated.
Additionally, a time period can be specifi ed, so that the report only includes specifi c
time periods, such as working hours.

•

•

•

Using the Nagios Web Interface

[84]

The following is a screenshot of a sample form for specifying the parameters for a
report. The actual fi elds may vary depending on the type of report that you want
to generate.

Chapter 3

[85]

After specifying the parameters in the form, and submitting it, the web interface will
generate a report matching your criteria. Some types of reports also allow you to
export the information in CSV format for further analysis. For a trend history report,
it is also possible to zoom in or out in order to customize the period for which the
report is generated.

The follow ing screenshot shows the availability report for all hosts. It shows how
much time each host has been up, down, or unreachable due to the parent machines
not being up.

Using the Nagios Web Interface

[86]

The report shows information for all hosts, in a table, along with a summary of the
overall availability.

It is possible to change the parameters of a report after it fi rst has been generated, to
modify the reported period or the information included on the report.

Summary
Be ing able to view the status of your infrastructure from a web browser is a great
very useful. Combined with an SSL-enabled web server, or by using a VPN, this
functionality can allow people in your company to check the status of the entire
network from any location in the world.

A large number of views can assist you in fi nding out what the root cause of a
problem is. You can view objects by their groups, as well as by individual host
or service.

If one or more hosts is down, then checking the network status on a 2D or 3D status
map should be the fi rst step you perform. There are also views for problems related
to hosts and services that only show the direct causes of the problems, and skip
issues that arise due to problems with other hosts or services.

The web interface also allows you to modify Nagio's behavior. It can also be used
to confi gure individual hosts and services. You can also schedule host and service
checks for a specifi ed time. You can use this, for example, if you want to check
whether the changes your team has performed will resolve current problems.

The web interface also allows you to schedule and manage host and service
downtimes. You can also read, create, and manage comments associated with
all objects.

Getting to know the web interface is really essential in order to use Nagios effectively.

Overview of Nagios Plugins
 Nagios' strength comes from its ability to monitor servers and the services they offer
in a large number of ways. What's more interesting is that all of these ways make
sure that your services are provided as functional, are external plugins, and work in
quite an easy way. Many of these are even shipped with Nagios, as we mentioned
in Chapter 2, Installation and Confi guration. Therefore, it is possible to either use
existing plugins or write your own.

The previous chapter discussed basic confi guration of host and service checking.
Nagios can be set up to check if your services are up and running. This chapter
describes how these checks work in more detail. It also introduces some of the
Nagios plugins that are developed as a part of Nagios, and as a part of the Nagios
Plugins project.

Nagios performs checks by running an external command, and uses the return code,
along with output from the command, as information on whether the check worked
or not. It is the command's responsibility to verify if a host or service is working at
the time the command is invoked.

Nagios itself handles all of the internals, such as scheduling the commands to be run,
storing their results, and determining what the status is for each host and service.

Nagios requires that all plugins follow a specifi c, easy-to-follow behavior in order
for them to work smoothly. These rules are common for both host checks and service
checks. It requires that each command returns specifi c result codes, which are:

Exit code Status Description
0 OK Working correctly
1 WARNING Working, but needs attention (for example, low resources)
2 CRITICAL Not working correctly or requires attention
3 UNKNOWN Plugin was unable to determine the status for the

host or service

Overview of Nagios Plugins

[88]

Standard output from the command is not parsed in any way by Nagios. It is usually
formatted in the following way:

PLUGIN STATUS - status description

Usually, the status description contains human-readable information that is visible
using the web interface. Some sample outputs from various plugins and states are:

PING OK - Packet loss = 0%, RTA = 0.18 ms
DNS WARNING: 0.015 seconds response time
DISK CRITICAL - free space: /boot 18 MB (8% inode=99%)

Nagios plugins use options for their confi guration. It is up to the plugin author's host
to parse these options. However, most commands that come as part of the Nagios
Plugins package use standard options and support the-h or --help options to
provide a full description of all the arguments they accept.

Standard Nagios plugins usually accept the following parameters:

Option Description
-h, --help Provide help
-V, --version Print the exact version of the plugin
-v, --verbose Make the plugin report more detailed information on what it is doing
-t, --timeout Timeout (seconds); after this time plugin will report CRITICAL status
-w, --warning Plugin-specifi c limits for the WARNING status
-c, --critical Plugin-specifi c limits for the CRITICAL status
-H, --hostname Host name, IP address or unix socket to communicate with
-4, --use-ipv4 Use IPv4 for network connectivity
-6, --use-ipv6 Use IPv6 for network connectivity

Commands that verify various daemons also have a common set of options. Many
of the networking-related plugins use the following options in addition to the
preceding standard ones

Option Description
-p, --port TCP or UDP port to connect to
-w, --warning Response time that will issue a WARNING status (seconds)
-c, --critical Response time that will issue a CRITICAL status (seconds)
-s, --send String that will be sent to the server
-e, --expect String that should be sent back from the server (option might be

passed several times; see --all for details)

Chapter 4

[89]

Option Description
-q, --quit String to send to the server to close the connection
-A, --all In case multiple --expect parameters are passed, this option indicates

that all responses need to be received; if this option is not present, at
least one matching result indicates a success

-m, --maxbytes The maximum number of bytes to read when expecting a string to
be sent back from the server; after this number of bytes, a mismatch
is assumed

-d, --delay Delay in seconds between sending a string to server and expecting
a response

-r, --refuse Status that should be indicated in case the connection is refused
(ok, warn, crit; defaults to crit)

-M Status in case the expected answer is not returned by the server
(ok, warn, crit; defaults to warn)

-j, --jail Do not return output from the server in plugin output text
-D, --certifi cate The number of days that the SSL certifi cate must still be valid;

requires –ssl
-S, --ssl Connect using SSL encryption
-E, --escape Allows using \n, \r, \t or \\ in send or quit string; must be passed

before --send or --quit option

This chapter describes the commands provided by a standard distribution Nagios
Plugins and is based on version 1.4.10. Before using specifi c options for a command,
it is recommended that you use the --help option and familiarize yourself with the
functionality available on your Nagios installation.

All plugins have their nonstandard options, described in more detail in this chapter.
All commands described in this chapter also have a sample confi guration for the
Nagios check command. Even though some longer defi nitions might span multiple
lines, please make sure that you put it on a single line in your confi guration. Some
of the plugins already have their command counterparts confi gured with the sample
Nagios confi guration that is installed along with Nagios. Therefore, it is also worth
checking if your commands.cfg fi le contains a defi nition for a particular command.

Standard Network Plugins
 One of the basic roles of a plugin is to monitor local or remote hosts and verify if they
are working correctly. There is a choice of generic plugins to accomplish this task.

Overview of Nagios Plugins

[90]

Standard networking plugins allow hosts to be monitored using ICMP ECHO
(ping: refer to http://en.wikipedia.org/wiki/Ping). This is used to determine
whether a computer is responding to IP requests. It is also used to measure the
time that a machine takes to respond, and how many packages are lost during the
communication. These plugins also try to connect to certain TCP/UDP ports. This is
used to communicate with various network based services to make sure that they are
working properly, and respond within a defi ned amount of time.

Checking If a Host is Alive
 Checking if a host is alive is a basic test that should be performed for all remote
machines. Nagios offers a command that is commonly used for checking if a host is
alive and plugged into the network. The syntax of the plugin is as follows:

check_ping -H <host_address> -w <wrta>,<wpl>% -c <crta>,<cpl>%
 [-p packets] [-t timeout] [-4|-6]

This command accepts the standard options described above, as well as the
following nonstandard options:

Option Description
-p,--packets Number of packets to send; defaults to 5
-w, --warning WARNING status limit in form of RTA,PKTLOSS%
-c, --critical CRITICAL status limit in form of RTA,PKTLOSS%

 RTA means Round Trip Average, and is the average time taken in milliseconds for
the package to return. PKTLOSS is Packet Loss, which is the maximum percentage
of packages that can be lost during communication. For example, a value of 100, 20%
means that a ping must return within 0.1 seconds on average, and at least 4 out of 5
packages have to come back.

A sample command defi nition for checking if a host is alive is:

 define command
 {
 command_name check-host-alive
 command_line $USER1$/check_ping -H $HOSTADDRESS$ -w 3000.0,80%
 -c 5000.0,100% -p 5
 }

Chapter 4

[91]

Testing Connectivity over TCP and UDP
 In many cases, Nagios is used to monitor services that work over the network. For
checking if a service is working properly, it is necessary to make sure that a certain
TCP or UDP port is accessible over the network. For example, Microsoft SQL Server
listens on TCP port 1433. In many cases, it is enough to simply run generic plugins
that check whether a service is available on a specifi ed TCP or UDP port. However, it
is recommended that you run specialized plugins for various services such as web or
email servers, as these commands also try basic communication with the server and/
or measure response time.

Internally, as this command is also handling many other checks, the syntax is almost
the same. It is designed so that, it behaves slightly differently based on the name it
is called with. Many other plugins are symbolic links to check_tcp. The check_tcp
plugin is mainly intended to test services that do not have a corresponding Nagios
check command. The second command, check_udp is also a symbolic link to check_
tcp and differs only by communicating over UDP instead of TCP. Its syntax is
as follows:

check_tcp|check_udp -H host -p port [-w <warning >] [-c <critical >]
 [-s <send string>] [-e <expect string>] [-q <quit string>]
 [-A] [-m <maximum bytes>] [-d <delay>] [-t <timeout>]
 [-r <refuse state>] [-M <mismatch state>] [-v] [-4|-6]
 [-j] [-D <days to cert expiry>] [-S] [-E]

These commands accept several nonstandard options as follows:

Option Description
-p, --port TCP or UDP Port to connect to
-w, --warning Response time that will issue a WARNING status (in seconds)
-c, --critical Response time that will issue a CRITICAL status (in seconds)

An example, to verify whether VMware server 1.x is listening for connections,
is as follows:

 define command
 {
 command_name check_vmware
 command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p 902
 –e "220 VMware"
 }

Overview of Nagios Plugins

[92]

For UDP, the following is an example command defi nition to verify if the OpenVPN
server is listening on UDP port 1142:

 define command
 {
 command_name check_openvpn
 command_line $USER1$/check_udp -H $HOSTADDRESS$ -p 1142
 }

Monitoring Email Servers
 Making sure that all email-related services are working correctly is something that
each hosting company and intranet administrator needs to perform on a daily basis.
In order to do this, Nagios can watch these servers and make sure things are working
as expected. This can be done by a remote machine to make sure that the services are
accessible, or can be monitored by the same server that offers these services.

Nagios can make sure that the processes are running and waiting for connections. It
is also easy to verify whether a predefi ned user/password pair is working properly
to make sure that a custom authorization system is working properly.

This section describes the commands that check email servers using network
connectivity. Plugins that verify specifi c processes on a server can be used to make
sure a particular daemon is up and running as well.

POP3 and IMAP Checks
 POP3 is the most popular protocol for retrieving email messages from an email
client application. It uses TCP port 110 for unencrypted connections and port 995
for SSL encrypted connections. Nagios offers means to verify both unencrypted
and encrypted POP3 connections that can be made. Even though POP3 is the most
popular email retrieving protocol, another protocol is also very common. IMAP is a
protocol that is used to access emails on remote servers rather than download them
to the user's computer. It uses TCP port 143 for standard connections and port 993
for encrypted connections over SSL. The following plugins are based on check_tcp
(and are actually symbolic links to check_tcp). The syntax is identical to the
original plugin:

check_pop|check_imap -H host [-p port] [-w <warning>] [-c <critical >]
 [-s <send string>] [-e <expect string>] [-q <quit string>]
 [-A] [-m <maximum bytes>] [-d <delay>]
 [-t <timeout seconds>] [-r <refuse state>]
 [-M <mismatch state>] [-v] [-4|-6] [-j]
 [-D <days to cert expiry>] [-S] [-E]

Chapter 4

[93]

The only difference between this plugin and the standard command is that the port
parameter can be omitted for this plugin, and in this case, a default value for both
non-SSL and SSL variants is chosen. In order to enable connection over SSL, either
pass the --ssl option, or invoke the command as check_spop instead of check_pop
and check_simap instead of check_imap.

The following are sample command defi nitions that check for a daemon listening on
a specifi ed host and verify that a valid POP3 and IMAP welcome message
can be retrieved:

 define command
 {
 command_name check_pop
 command_line $USER1$/check_pop -H $HOSTADDRESS$
 }

 define command
 {
 command_name check_imap
 command_line $USER1$/check_imap -H $HOSTADDRESS$
 }

However, it seems more useful to verify the actual functionality of the server. It is,
therefore, reasonable to also verify that a predefi ned username and password is
accepted by our POP3 daemon. In order to do that, the example uses -E to escape
newline characters, -s to send commands that authenticate, and -e to verify that
the user has actually been logged in. In addition, the -d option is passed to indicate
that the command should wait a couple of seconds before analyzing the output. If
this option is not passed, the command will return after the fi rst line. The following
examples should work with any POP3/IMAP server, but it may be necessary to
customize the response for your particular environment.

 define command
 {
 command_name check_pop3login
 command_line $USER1$/check_pop -H $HOSTADDRESS$ -E
 –s "USER $ARG1$\r\nPASS $ARG2$\r\n" -d 5
 -e "ogged in"
 }

 define command
 {
 command_name check_imaplogin
 command_line $USER1$/check_imap -H $HOSTADDRESS$ -E
 -s "pr01 LOGIN $ARG1 $ARG2$\r\n" -d 5
 -e "pr01 OK"
 }

Overview of Nagios Plugins

[94]

The value that is passed in the -s option is a string with two lines for POP3 and one
line for POP4. Each line ends with a newline character (\r\n) that are sent as newline
characters due to using the -E option.

For POP3, these lines are standard protocol commands to log into an account. The
POP3 server should then issue a response stating that the user is authenticated,
and this is what the command is expecting to receive—because of the -e option.
In addition, $ARG1$ and $ARG2$ will be replaced with a username and a password
that is supplied in a service check defi nition, which allows different usernames and
passwords to be specifi ed for different checks.

With IMAP4, there is only a slight difference in the protocol dialect. IMAP requires
the sending of only a single LOGIN command in order to authenticate. As for POP3,
$ARG1$ and $ARG2$ will be replaced with a username and password. In this way it is
possible to set up checks for different users and passwords with a single command
defi nition. The pr01 string can be replaced by any other text without spaces. It is
necessary with the IMAP protocol to bind requests with answers provided by
the server.

To be able to determine exactly what is sent to and received from the server, the -v
option can be used.

SMTP Daemon Testing
 SMTP is a protocol for sending emails—both from a client application as well as
between email servers. Therefore, monitoring it is also very important from the point
of view of availability.

Nagios standard plugins offer a command to check whether an SMTP server is
listening. Unlike checks for POP3 and IMAP, the command is available only for this
particular protocol and therefore, the options are a bit different:

check_smtp -H host [-p port] [-C command] [-R response] [-f from addr]
 [-F hostname] [-A authtype –U authuser –P authpass]
 [-w <warning time>] [-c <critical time>] [-t timeout]
 [-S] [-D days] [-n] [-4|-6]

The plugin accepts most of the standard options. Additional ones are as follows:

Option Description
-C, --command SMTP command to execute on the server (option might be repeated)
-R, --response Response to expect from the server (option might be repeated)
-f, --from Attempt to set from where the email is originating

Chapter 4

[95]

Option Description
-F, --fqdn Fully-qualifi ed domain name to send during SMTP greeting

(defaults to the local hostname if not specifi ed)
-S, --starttls Use STARTTLS to initialize connection over SMTP

The port can be omitted and defaults to 25. In this case,the –S option also behaves a
bit differently and uses the STARTTLS function of SMTP servers instead of connecting
directly over SSL. A basic SMTP check command defi nition looks like this:

 define command
 {
 command_name check_smtp
 command_line $USER1$/check_smtp -H $HOSTADDRESS$
 }

Most of these options are similar to the standard send/expect parameters in the way
they work. Therefore, it is quite easy to create a more complex defi nition that verifi es
the sending of emails to a specifi c address:

 define command
 {
 command_name check_smtpsend
 command_line $USER1$/check_smtp -H $HOSTADDRESS$
 -f "$ARG1$" –C "RCPT TO:<$ARG2$>" –R "250"
 }

This check will attempt to send an email from $ARG1$ to $ARG2$, which will be
passed from a check defi nition, and expects to receive a return code 250, which
indicates that no error has occurred.

Monitoring Network Services
 Nagios also offers plugins that monitor different network services. These include
commands for checking FTP, DHCP protocol, and WWW servers. It is also possible
for Nagios to monitor itself.

FTP Server
 Nagios allows you to verify whether an FTP server is listening for connections by using
the check_tcp command. This plugin is identical to check_tcp, with the difference
that the port is optional, and by default a valid FTP welcome message is expected.

check_ftp -H host [-p port] [-w <warning time>] [-c <critical time>]
 [-s <send string>] [-e <expect string>] [-q <quit string>]
 [-A] [-m <maximum bytes>] [-d <delay>]

Overview of Nagios Plugins

[96]

 [-t <timeout seconds>] [-r <refuse state>]
 [-M <mismatch state>] [-v] [-4|-6] [-j]
 [-D <days to cert expiry>] [-S] [-E]

The port argument can be omitted and defaults to 21, or 990 for SSL based
connections. A sample command defi nition for checking FTP accepting connections
is as follows:

 define command
 {
 command_name check_ftp
 command_line $USER1$/check_ftp -H $HOSTADDRESS$
 }

By using the -s and -e fl ags, it is also possible to verify if a specifi ed username and
password is allowed to log in:

 define command
 {
 command_name check_ftplogin
 command_line $USER1$/check_ftp -H $HOSTADDRESS$ -E
 -s "USER $ARG1\r\nPASS $ARG2$\r\n" -d 5
 -e "230"
 }

This example is quite similar to POP3 authentication as the commands are the
same. The only difference is that the requested response is 230 as this is a code for a
successful response to the PASS command. In order to preview what is sent to and
received from the server, the -v option can be used.

DHCP Tests
 If your network has a server or a router that provides the users with IP addresses
via DHCP, it would be wise to make sure that this server is also working correctly.
Nagios offers a plugin that attempts to request an IP address via a DHCP protocol,
which can be used for this purpose. The syntax is a bit different from other plugins:

check_dhcp [-v] [-u] [-s serverip] [-r requestedip] [-t timeout]
 [-i interface] [-m mac]

Chapter 4

[97]

This command accepts the options described in the following table:

Option Description
-s, --serverip The IP of the server that needs to reply with an IP

(option might be repeated)
-r, --requestedip Indicates that at least one DHCP server needs to offer the

specifi ed IP address
-m, --mac The MAC address that should be used in the DHCP request
-i, --interface The name of the interface that is to be used for checking

(for example eth0)
-u, --unicast Unicast – for testing a DHCP relay request; requires -s

Options for DHCP checking are very powerful—they can be used to check if any
server is responding to the DHCP requests, for example:

 define command
 {
 command_name check_dhcp
 command_line $USER1$/check_dhcp
 }

This plugin can also be used to verify if specifi c servers work, if a specifi ed
MAC address will receive an IP address, if a specifi c IP address is returned, or a
combination of these check, as shown below:

 define command
 {
 command_name check_dhcp_mac
 command_line $USER1$/check_dhcp –s $HOSTADDRESS$
 -m $ARG1$ -r $ARG2$
 }

This check will ensure that a specifi c machine provides a specifi c IP for requesting
a specifi c MAC address. This allows checks to be created for specifi c DHCP rules,
which is crucial in the case of networks that need to provide specifi c devices with IP
addresses, which other services depend upon.

It is also worth noting that such tests are safe from a network's perspective as the
IP received from the server is not acknowledged by the Nagios plugin. Therefore,
a check for a specifi c MAC address can be done even if a network card with the
same address is currently connected. DHCP works over broadcast IP requests and
therefore it is not recommended that you set up testing of this service often as it
might cause excessive traffi c for larger networks.

Overview of Nagios Plugins

[98]

Verifying the Nagios Daemon
 It is possible for Nagios to monitor whether or not it is running on the local machine.
This works by checking the Nagios log fi le for recent entries, as well as reading the
output from the ps system command to ensure that the Nagios daemon is currently
running. This plugin is mainly used in combination with NRPE or SSH, which are
described in more detail in Chapter 8 Monitoring Remote Hosts. However, it can also
be deployed to check the same Nagios that is scheduling the command – mainly to
make sure that the log fi les contain recent entries. The syntax and options are
as follows:

check_nagios -F <status log file> -e <expire_minutes>
 -C <process_string>

Option Description
-F, --fi lename IP of the server that needs to reply with an IP (option might be repeated)
-e, --expires The number of minutes after which the log fi le is assumed to be stale
-C, --command Command or partial command to search for in the process list

All of the arguments listed above are required. The check for the --expires option
is done by comparing the date and time of the latest entry in the log with the current
date and time. The log fi le is usually called nagios.log and is stored in the directory
that was passed in the --localstatedir option during Nagios compilation. For
an installation performed according to the steps given in Chapter 2, the path will
be /var/nagios/nagios.log. The Nagios process for such a setup would be /
opt/nagios/bin/nagios. An example defi nition of a command receiving all of the
information as arguments is as follows:

 define command
 {
 command_name check_nagios
 command_line $USER1$/check_nagios –F $ARG1$ -C $ARG2$ -e $ARG3$
 }

The fi rst argument is the path to the log fi le, the second is the path to the Nagios
daemon binary, and the last one is the maximum acceptable number of minutes since
the last log updated.

Chapter 4

[99]

Testing Web Sites
 Making sure that the web sites are up and running 24/7 is vital to many large
companies. Verifying that the returned pages contain correct data may be even more
important for companies conducting e-commerce. Nagios offers plugins to verify
that a web server works. It can also make sure that your SSL certifi cate is still valid,
and can also verify the contents of specifi c pages to check that they contain specifi c
text. This command accepts various parameters, as follows:

check_http -H <vhost> | -I <IP-address> [-u <uri>] [-p <port>]
 [-w <warning time>] [-c <critical time>] [-t <timeout>]
 [-L] [-a auth] [-f <ok | warn | critcal | follow>]
 [-e <expect>] [-s string] [-l]
 [-r <regex> | -R <regex>] [-P string]
 [-m <min_pg_size>:<max_pg_size>]
 [-4|-6] [-N] [-M <age>] [-A string] [-k string] [-S]
 [-C <age>] [-T <content-type>]

The following table lists the options that differ from their usual behavior, or are not
common in other commands:

Option Description
-H, --hostname The host name that should be used for the Host http header; The port

might be appended, so it is also present in the http header
-I, --IP-address The IP address to connect to; if not specifi ed, --hostname is used
-u, --url The URL to GET or POST (defaults to /)
-P, --post Post the encoded http via POST; content is specifi ed as argument
-N, --no-body Do not wait for the document, only parse the http headers
-M, --max-age Warn if the document is older than the number of seconds provided;

this parameter can also be specifi ed as (for example) "15m" for minutes,
"8h" for hours or "7d" for days

-T,--content-type Specify the http Content-Type header
-e, --expect The text to expect in the fi rst line of the http response; If specifi ed, the

plugin will not handle status code logic (i.e. won't warn about 404)
-s, --string Search for the specifi ed text in result html
-r, --ereg Search for a specifi ed regular expression in html (case sensitive)
-R, --eregi Search for a specifi ed regular expression in html (case insensitive)
-l, --linespan Allow the regular expression to span across new lines
--invert-regex return a state of CRITICAL if the text is found, and OK if it is not found
-a,
--authorization

Authorize on the page using the basic authentication type.
Must be passed in the form of <username>:<password>

Overview of Nagios Plugins

[100]

Option Description
-A, --useragent Pass the specifi ed value as the User-Agent http header
-k, --header Add other parameters to be sent in http header (might be repeated)
-f, --onredirect How to handle redirects; can be one of: ok, warning, critical, follow
-m, --pagesize The minimum and maximum html page sizes in bytes, as

<min>:<max>

For example, to verify if a main page has at least the specifi ed number of bytes, and
is returned promptly, the following check can be done:

 define command
 {
 command_name check_http_basic
 command_line $USER1$/check_http –H $HOSTADDRESS$ -f follow
 -m $ARG1$:1000000 -w $ARG2$ -c $ARG3$
 }

More complex tests of the WWW infrastructure should be carried out frequently.
For example, to verify if an SSL-enabled page works correctly and quickly, a
more complex test might be required. The following command will verify the SSL
certifi cate and the page size, and will look for a specifi c string in the page body.

 define command
 {
 command_name check_https
 command_line $USER1$/check_http –H $HOSTADDRESS$ -S –C 14 -u
 $ARG1$
 -f follow –m $ARG1$:$ARG2$ -R $ARG3$
 }

 Checking web pages at a higher level is described in more detail in Chapter 11,
Extending Nagios, and uses plugins custom-written for this purposes.

Monitoring Database Systems
 Databases allow the storage of information that is used often by entire departments
or whole companies. Because most systems usually depend on one or more
databases, a failure in these databases can cause all of the underlying systems to go
down as well. Imagine a business-critical database failure that went unnoticed over
a weekend, making both the company's web site, as well as email, unavailable. That
would be a disaster! A series of scheduled reports that was supposed to be sent out,
would fail to be generated because of this.

Chapter 4

[101]

This is why, making sure databases are working correctly and have enough resources
to operate, might be essential for many companies. Many enterprise-class databases
also have table space capacity management which should also be monitored—even
though a valid user may be able to log in, this does not necessarily mean that a
database is up and running correctly.

MySQL
 One of the most commonly-used database types is MySQL. MySQL is, very
often, used to provide a basic database for PHP-based web applications. It is also
commonly used as a database systems for client-server applications. Nagios offers
two plugins to verify if MySQL is working properly. One of the plugins allows
checking of connectivity to the database and checking master-slave replication status.
The other one allows the measurement of the time taken to execute an SQL query.
The syntax of both the commands, and the defi nition of their options is as follows:

check_mysql [-H host] [-d database] [-P port]
 [-u user] [-p password] [-S]

check_mysql_query -q SQL_query [-w <warn>] [-c <crit>] [-d database]
 [-H host] [-P port] [-u user] [-p password]

Option Description
-P, --port The port to use for connections (defaults to 3306)
-d, --database The database to which an attempt to connect is to be made
-u, --username Username to log in with
-p, --password Password to log in with
-S, --check-slave (check_mysql only) Verify that the slave thread is running; this is

used for monitoring replicated databases
-w, --warning Specifi es the warning threshold; dependant on the plugin used
-c, --critical Specifi es the critical threshold; dependant on the plugin used
-q, --query (check_mysql_query only) Query to perform

For the check_mysql command, the -w and -c options allow us to verify if the
slave server is in sync with the master server. If the slave is more than the specifi ed
number of seconds behind the master server, a warning or critical status (as
appropriate) is returned.

Overview of Nagios Plugins

[102]

If the -S option is specifi ed, the plugin will also check whether the replication
of MySQL databases is working correctly. This check should be run on MySQL
slave servers to make sure that the replication with the master server is in place.
Monitoring the number of seconds by which the slave server is behind the master
server can be done using the -w and –c fl ags. In this case, if the slave server is more
than the specifi ed number of seconds behind the master server in the replication
process, a warning or critical status is issued. More information about checking
the replication status can be found under the MySQL documentation for the SHOW
SLAVE STATUS command (visit http://dev.mysql.com/doc/refman/5.0/en/
show-slave-status.html).

For the check_mysql_query command, the -w and -c options specify the limits
for the execution time of the specifi ed SQL query. This allows us to make sure that
database performance is within acceptable limits.

The defi nitions of the check commands for both a simple test and running an SQL
query within a specifi ed time are as follows.

 define command
 {
 command_name check_mysql
 command_line $USER1$/check_mysql –H $HOSTADDRESS$ -u $ARG1$
 -p $ARG2$ -d $ARG3$ -S –w 10 –c 30
 }

 define command
 {
 command_name check_mysql_query
 command_line $USER1$/check_mysql_query –H $HOSTADDRESS$ -u
 $ARG1$
 -p $ARG2$ -d $ARG3$ -q $ARG4$ –w $ARG5$ -c $ARG6$
 }

 Both the examples need the username, password, and dbname as arguments. The
second example also requires an SQL query, and warning, and critical time limits.

PostgreSQL
 PostgreSQL is another open source database which is commonly used in hosting
companies. It is also used very often for client-server applications. The Nagios
plugins package offers a command to check if the PostgreSQL database is working
correctly. Its syntax is quite similar to the MySQL command:

check_pgsql [-H <host>] [-P <port>] [-w <warn>] [-c <crit>]
 [-t <timeout>] [-d <database>] [-l <logname>]
 [-p <password>]

Chapter 4

[103]

The following table describes the options that this plugin accepts:

Option Description
-P, --port The port to use for connections (defaults to 5432)
-d, --database The database to attempt to connect to
-l, --logname The username to log in with
-p, --password The password to log in with

A sample check command that expects user name, password, and database name as
arguments is as follows:

 define command
 {
 command_name check_pgsql
 command_line $USER1$/check_pgsql –H $HOSTADDRESS$ -l $ARG1$
 -p $ARG2$ -d $ARG3$
 }

Oracle
 Oracle is a popular enterprise-class database server. It is mainly used by medium-
and large-sized companies for business critical applications. Therefore, a failure,
or even a lack of disk space, for a single database might cause huge problems for
a company. Fortunately, a plugin exists to verify various aspects of the Oracle
database. And it even offers the ability to monitor tablespace storage and cache
usage. The syntax is quite different from most Nagios plugins as the fi rst argument
specifi es the mode in which the check should be carried out, and the remaining
parameters are dependant on the fi rst one. The syntax is as follows:

check_oracle --tns <ORACLE_SID>
 --db <ORACLE_SID>
 --oranames <Hostname>
 --login <ORACLE_SID>
 --cache <ORACLE_SID> <USER> <PASS> <CRITICAL> <WARNING>
 --tablespace <ORACLE_SID> <USER> <PASS>
 <TABLESPACE> <CRITICAL> <WARNING>

For all checks, Oracle SID (System Identifi er) can be specifi ed in the form of <ip>
or <ip>/<database>. Because the plugin automatically adds the username and
password to the identifi er, an SID in the form of <username>[/<password>]@<ip>[/
<database>] should not be specifi ed, and in many cases, will not work.

Overview of Nagios Plugins

[104]

The --tns option checks if a database is listening for a connection based on
the tnsping command. This can be used as a basic check of both local and
remote databases.

Verifying that a local database is running can be done using the --db option
—in which case, a check is performed by running the Oracle process for a
specifi ed database.

Verifying a remote Oracle Names server can be done using the --oranames mode.

In order to verify if a database is working properly, a --login option can be used—
this tries to log in using an invalid username and verifi es whether the ORA-01017
error is received, in which case, the database is behaving correctly.

Verifying cache usage can be done using the --cache option, in which case, the
cache hit ratio is checked—if it is lower than the specifi ed warning or critical limits,
the respective status is returned. This allows the monitoring of bottlenecks within the
database caching mechanism.

Similarly, for tablespace checking, a --tablespace option is provided—a check is
carried out against the available storage for the specifi ed tablespace. If it is lower
than the specifi ed limits, a warning or critical status is returned (as appropriate).

This plugin requires various Oracle commands to be in the binary path (the PATH
environment variable). Therefore, it is necessary to have either the entire Oracle
installation or the Oracle client installation done on the machine that will perform the
checks for the Oracle database. Sample defi nitions to check the login into the Oracle
database and the database cache are as follows:

 define command
 {
 command_name check_oracle_login
 command_line $USER1$/check_oracle --login $HOSTADDRESS$
 }

 define command
 {
 command_name check_oracle_tablespace
 command_line $USER1$/check_oracle --cache $HOSTADDRESS$/$ARG1$
 $ARG2$ $ARG3$ $ARG4$ $ARG5$
 }

The second example requires the passing of the database name, username, password,
and critical/warning limits for the cache hit ratio. The critical value should be lower
than the warning value.

Chapter 4

[105]

Other Databases
 Even though Nagios supports verifi cation of some common databases, there are a
lot of commonly-used databases for which the standard nagios-plugins package
does not provide a plugin. For these databases, the fi rst thing worth checking is the
Nagios Exchange (visit http://www.nagiosexchange.org/) as this has a category
for database check plugins, with commands for checking various types of databases
(such as DB2, Ingres, Firebird, MS SQL, and Sybase).

In some cases, it might be suffi cient to use the check_tcp plugin to verify whether
a database server is up and running. In other cases, it might be possible to use a
dynamic language (such as Python, Perl, or Tcl) to write a small script that connects
to your database and performs basic tests. See Chapter 11, Extending Nagios for more
information on writing Nagios check plugins.

Storage Space
 Making sure that a system is not running out of space is very important. A lack
of disk space for basic paths such as/var/spool or /tmp might cause unexpected
results throughout the entire system. Quotas that are not properly set up for home
directories might also cause disk space to run out in a few minutes under
certain circumstances.

Nagios can monitor storage space and warn administrators before such problems
happen. It is also possible to monitor remote shares on other disks without mounting
them. This would be useful for easily monitoring disk space on Windows boxes,
without installing the dedicated Windows Nagios tools described in Chapter 10,
Advanced Monitoring.

Virtual Memory Monitoring
 Making sure that a system is not running out of swap space is essential to the
system's correct behavior. Many operating systems have mechanisms that kill the
most resource -intensive processes when the system is running out of memory, and
this usually leads to many services not functioning properly—many vital processes
are not properly respawned in such cases. It is, therefore, a good idea to monitor
swap space usage, in order to be able to handle low memory issues on critical
systems. Nagios offers a plugin to monitor each swap device independently, as well
as the ability to monitor cumulative values. The syntax and description of these
options are as follows:

check_swap [-a] [-v] -w limit -c limit

Overview of Nagios Plugins

[106]

Option Description
-a, --all Compare all swap partitions one by one;

if not specifi ed, only total swap sizes are checked.

Values for the -w and -c options can be supplied in the form of <value>%, in which
case the <value> percent must be free in order not to cause an exception to be
generated. They can also be supplied in the form <value><unit> (for example,
1000k, 100M, 1G), and in this case, a test fails if less than the specifi ed amount of
swap space is available.

A sample defi nition of a check is as follows:

 define command
 {
 command_name check_swap
 command_line $USER1$/check_swap –w $ARG1$ -c $ARG2$
 }

Monitoring IDE/SCSI SMART
 Nagios offers a standard plugin that uses SMART (Self-Monitoring, Analysis, and
Reporting Technology System) technology to monitor and report the failure of disk
operations. This plugin operates on top of the SMART mechanism and verifi es the
status of local hard drives. If supported by the underlying IDE and SCSI hardware,
this plugin allows the monitoring of hard disk failures. The syntax is as follows:

check_ide_smart [-d <device>] [-i] [-q] [-1] [-O] [-n]

The table below provides a description of the accepted options:

Option Description
-d, --device The device to verify; if this option is set, no other options are accepted
-i, --immediate Perform offl ine tests immediately
-q, --quick-check Return the number of failed tests
-1, --auto-on Enable automatic offl ine tests
-0, --auto-off Disable automatic offl ine tests
-n, --nagios Return output suitable for Nagios

Chapter 4

[107]

A sample defi nition of a command to monitor a particular device and report failed
tests is as follows:

 define command
 {
 command_name check_ide_smart
 command_line $USER1$/check_ide_smart –d $ARG1$ -1 –q -n
 }

Checking Disk Space
 One of the most common checks is checking one or more mounted partitions
for available space. Nagios offers a plugin for doing this. This plugin offers very
powerful functionality, and can be set up to monitor one, several, or all partitions
mounted in a system. The syntax for the plugin is as follows:

check_disk -w limit -c limit [-W limit] [-K limit] {-p path | -x
 device}
 [-C] [-E] [-e] [-g group] [-k] [-l] [-M] [-m] [-R path]
 [-r path] [-t timeout] [-u unit] [-v] [-X type]
 [-d <database>] [-l <logname>] [-p <password>]

The most commonly-used options for this plugin are described in the following table:

Option Description
-w, --warning Return a warning status if less than the specifi ed percentage of

disk space is free
-c, --critical Return a critical if less than the specifi ed percentage of disk

space is free
-W, --iwarning Return a warning if less than the specifi ed percentage of inodes

are free
-K, --icritical Return a critical if less than specifi ed percentage of inodes are free
-p, --path The path or partition to verify (option might be specifi ed

multiple times)
-M, --mountpoint Display the mount point instead of the partition in the result
-l, --local Check only local fi le systems
-A, --all Verify all mount points
-r, --ereg-path Regular expression to fi nd paths/partitions (case sensitive)
-R, --eregi-path Regular expression to fi nd paths/partitions (case insensitive)

Overview of Nagios Plugins

[108]

Values for the -w and -c options can be supplied in the form <value>%, in which
case <value> percent must be free in order not to cause a state to occur. They can
also be specifi ed in the form of <value><unit> (for example, 800k, 50M, and 4G) in
which case, a test fails if the available space is less than the specifi ed amount . Checks
for inode availability (options -W and -K) can only be specifi ed in the form <value>.

It is possible to check a single partition or specify multiple -p, -r or -R options, and
check if all matching mount points have suffi cient disk space. It is sometimes better
to defi ne separate checks for each partition so that if the limits are exceeded on
several of these, each one is tracked separately. The sample check commands for a
single partition and for all partitions are shown in the following examples:

 define command
 {
 command_name check_partition
 command_line $USER1$/check_disk –p $ARG1$ –w $ARG2$ -c $ARG3$
 }

 define command
 {
 command_name check_local_partitions
 command_line $USER1$/check_disk –A –l –w $ARG1$ -c $ARG2$
 }

 Both of these commands expect warning and critical levels, but the fi rst example
also requires a partition path or device as the fi rst argument. It is possible to build
more complex checks either by repeating the -p parameter or by using -r to include
several mount points.

Testing Free Space for Remote Shares
 Nagios offers plugins that allows the monitoring of remote fi le systems exported
over the SMB/CIFS protocol, the standard protocol for fi le sharing used by Microsoft
Windows®. This allows you to check whether a specifi ed user is able to log on to a
particular fi le server and to monitor the amount of free disk space on the fi le server.
The syntax of this command is as follows:

check_disk_smb -H <host> -s <share> -u <user> -p <password>
 -w <warn> -c <crit> [-W <workgroup>] [-P <port>]

Options specifi c to this plugin are described in the following table:

Option Description
-s, --share SMB share that should be tested
-u, --user The username to login to the server as (defaults to guest)

Chapter 4

[109]

Option Description
-p, --password The password to use for logging in
-P, --port The port to be used for connections; defaults to 139

Values for the -w and -c options can be specifi ed in the form <value>%, in which
case <value> percent must be free in order to not generate an exception. They can
also be specifi ed in form of <value><unit> (for example, 800k, 50M, and 4G), in
which case, the test fails if the available space is less than the specifi ed amount

This command uses the smbclient command to communicate over SMB protocol.
It is, therefore, necessary to have the Samba client package installed on the machine
where the test will be run.

 Sample command defi nitions to check connectivity to a share without checking for
disk space, and also to verify disk space over SMB, are as follows:

 define command
 {
 command_name check_smb_connect
 command_line $USER1$/check_disk_smb –H $HOSTADDRESS$ -w 100%
 -c 100% -u $ARG1$ -p $ARG2$ -s $ARG3$
 }

 define command
 {
 command_name check_smb_space
 command_line $USER1$/check_disk_smb –H $HOSTADDRESS$
 -u $ARG1$ -p $ARG2$ -s $ARG3$ -w $ARG4$ -c $ARG5$
 }

Both of the commands require the passing of a username, password and share name
as arguments. The latter example also requires the passing of warning and critical
value limits to check. The fi rst example will only issue a critical state if a partition
has no space left. It is also worth noting that Samba 3.x servers report quota as disk
space, if this is enabled for the specifi ed user. Therefore, this might not always be an
accurate way to measure disk space.

Resource Monitoring
 For servers or workstations to be responsive and to be kept from being overloaded,
it is also worth monitoring system usage using various additonal measures. Nagios
offers several plugins to monitor resource usage and to report if the limits set for
these checks are exceeded.

Overview of Nagios Plugins

[110]

System Load
 The fi rst thing that should always be monitored is the system load. This value refl ects
the number of processes and the amount of CPU capacity that they are utilizing.
This means that if one process is using up to 50% of the CPU capacity, the value will
be around 0.5; and if four processes try to utilize the maximum CPU capacity, the
value will be around 4.0. The system load is measured in three values—the average
loads in the last minute, last 5 minutes, and the last 15 minutes. The syntax of the
command is as follows:

check_swap [-r] –w wload1,wload5,wload15 –c cload1,cload5,cload15

Option Description
-r, --percpu Divide the load averages by the number of CPUs

Values for the -w and -c options should be in the form of three values separated
by commas. If any of the load averages exceeds the specifi ed limits, a warning, or
critical status will be returned, respectively. Here is a sample command defi nition
that uses warning and critical load limits as arguments:

 define command
 {
 command_name check_load
 command_line $USER1$/check_load –w $ARG1$ -c $ARG2$
 }

Checking Processes
 Nagios also offers a way to monitor the total number of processes. Nagios can be
confi gured to monitor all processes, only running ones, those consuming CPU, those
consuming memory, or a combination of these criteria. The syntax and options are
as follows:

check_procs -w <range> -c <range> [-m metric] [-s state]
 [-p ppid] [-u user] [-r rss] [-z vsz] [-P %cpu]
 [-a argument-array] [-C command] [-t timeout] [-v]

Option Description
-m, --metric Select which value to use; one of the following:

PROCS—Number of processes (the default)
VSZ—Virtual memory size of matching process
RSS—Resident set memory size of matching process
CPU—Percentage CPU time of matching process
ELAPSED—Time elapsed in seconds of matching process

Chapter 4

[111]

Option Description
-s, --state Only check processes that have the specifi ed status; this is the

same as the status in the ps command
-p, --ppid Check the children of the indicated process IDs
-z, --vsz Check processes with a virtual memory size exceeding value
-r, --rss Check processes with the resident set memory exceeding value
-P, --pcpu Check processes with the CPU usage exceeding value
-u, --user Check processes owned by a specifi ed user
-a,--argument-array Check processes whose arguments contain a specifi ed value
-C, --command Check processes with exact matches of the specifi ed value as a

command

Values for the -w and -c options can either take a single value, or take the form of
<min>:<max>. In the fi rst case, a warning or critical state is returned if the value
(number of processes by default) exceeds the specifi ed number. In the second case,
the appropriate status is returned if the value is lower than <min> or higher than
<max>. Sample commands to monitor the total number of processes and to monitor
the number of specifi c processes are as follows. The second code, for example, can
be used to check to see if the specifi c server is running, and has not created too many
processes. In this case, warning or critical values should be specifi ed
ranging from 1.

 define command
 {
 command_name check_procs_num
 command_line $USER1$/check_procs –m PROCS –w $ARG1$ -c $ARG2$
 }

 define command
 {
 command_name check_procs_cmd
 command_line $USER1$/check_procs –C $ARG1$ –w $ARG1$ -c $ARG2$
 }

Monitoring Logged-in Users
 It is also possible to use Nagios to monitor the number of users currently logged in to
a particular machine. The syntax is very simple and there are the no options, except
for warning and critical limits.

check_users -w limit -c limit

Overview of Nagios Plugins

[112]

A command defi nition that uses warning or critical limits specifi ed in the
arguments is as follows:

 define command
 {
 command_name check_users
 command_line $USER1$/check_users –w $ARG1$ -c $ARG2$
 }

Miscellaneous Plugins
 Nagios also offers plugins for many other operations that are common to daily
system monitoring and activities; this section covers only a few of them. It is
recommended that you look for remaining commands in both the Nagios-plugins
package as well as on the NagiosExchange web site.

APT Updates Checking
 Many Linux distributions use APT (Advanced Packaging Tool) for handling
package downloads (visit http://en.wikipedia.org/wiki/Advanced_Packaging_
Tool). This tool is used by default on Debian and its derivatives. It allows the
handling of upgrades and download of packages. It also allows the synchronization
of package lists from one or more remote sources. Nagios provides a plugin that
allows you to monitor, if any upgrades are available, and/or perform upgrades
automatically. The syntax and options are as follows:

check_apt [–d|-u|-U [<opts>]] [-n] [-t timeout]
 [-i <regex>] [-e <regex>] [-c <regex>]

Option Description
-u, --update Perform an apt update operation prior to other operations
-U,--upgrade Perform an apt upgrade operation
-d,--dist-upgrade Perform an apt dist-upgrade operation
-n, --no-upgrade Do not run upgrade or dist-upgrade; useful only with -u
-i, --include Include only packages matching a regular expression
-c, --critical If any packages match a regular expression, a critical state is

returned.
-e, --exclude Exclude packages matching a regular expression

If the -u option is specifi ed, the command fi rst attempts to update apt package
information. Otherwise, the package information currently in cache is used. If the
-U or -d option is specifi ed, the specifi ed operation is performed. If -n is specifi ed,

Chapter 4

[113]

only an attempt to run the operation is made, without actually upgrading perform
monitoring (and not upgrade) activities system. The plugin might also be based on
daily apt updates/upgrades and only monitor.

The following is a command defi nition for a simple dist-upgrade, as well as for
monitoring available packages and issuing a critical state if the Linux images are
upgradeable (that is, if newer packages exist). However, this command does not
perform the actual upgrades.

 define command
 {
 command_name check_apt_upgrade
 command_line $USER1$/check_apt –u -d
 }

 define command
 {
 command_name check_apt_upgrade2
 command_line $USER1$/check_apt –n –u –d
 –c "^linux-(image|restrict)"
 }

UPS Status Checking
 Another useful feature is that of Nagios being able to monitor UPS status over
the network. This requires the machine with UPS to have the Network UPS Tools
package (visit http://www.networkupstools.org/) installed and running, so that it
is possible to query the UPS parameters. It is also possible to monitor local resources
using the same plugin. The syntax and options are as follows:

check_ups -H host -u ups [-p port] [-v variable] [-T]
 [-w <warn time>] [-c <crit time>] [-t <timeout>]

Option Description
-u, --ups The name of the UPS to check
-p, --port The port to use for TCP/IP connection; Defaults to 3493
-T, --temperature Report the temperature in Celsius degrees
-v, --variable Variable to output; one of: LINE, TEMP, BATTPCT or LOADPCT.

The name of the UPS is usually defi ned in the ups.conf fi le on the machine that the
command is connecting to. The plugin will return an ok state if the UPS is calibrating
or running on AC power. A warning state is returned if the UPS claims to be running
on batteries, and a critical state is returned in the case of a low battery or if the
UPS is off.

Overview of Nagios Plugins

[114]

The following is a sample defi nition of a check command that gets passed the UPS
name as an argument:

 define command
 {
 command_name check_ups
 command_line $USER1$/check_ups –H $HOSTADDRESS$ -u $ARG1$
 }

LM Sensors
 This is a Linux-specifi c plugin that uses the lm-sensors package (visit http://www.
lm-sensors.org/) to monitor hardware health.

The command issues an unknown state if the underlying hardware does not support
health monitoring or if the lm-sensors package is not installed, a warning if a non-
zero error is returned by the sensors command, and a critical staus if the string
ALARM is found within the output from the command.

The plugin does not take any arguments and simply reports information based on
the sensors command.

The command defi nition is as follows:

 define command
 {
 command_name check_sensors
 command_line $USER1$/check_sensors
 }

Dummy Check Plugin
 Nagios also offers a dummy checking plugin. It simply takes an exit code (which is
described on page X). It is useful for testing dependencies between hosts and
/or services, verifying notifi cations, and can also be used for a service that will be
measured using passive checks only. The syntax of this plugin is as follows:

check_dummy <exitcode> [<result string>]

A sample commands to return an ok status as well as critical with a status text
supplied as an argument is shown below:

 define command
 {
 command_name check_dummy_ok
 command_line $USER1$/check_dummy 0
 }

Chapter 4

[115]

 define command
 {
 command_name check_dummy_critical
 command_line $USER1$/check_dummy 0 $ARG1$
 }

Manipulating Other Plugins' Output
 Nagios offers an excellent plugin that simply invokes other checks and converts their
status accordingly. This might be useful when a failed check from a plugin is actually
an indication that the service is working correctly. This can, for example, be used to
make sure that non-authenticated users can't send emails while valid users can. The
syntax and options are as follows:

negate [–t timeout] [-o|-w|-c|-u state] <actual command to run>

Option Description
-o, --ok State to return to when the actual command returns an ok state
-w, --warning State to return to when the actual command returns a warning state
-c, --critical State to return to when the actual command returns a critical state
-u, --unknown State to return to when the actual command returns an unknown state

The states to return can either be specifi ed as exit code number or as a string. If no
options are specifi ed, only the ok and critical states are swapped. If at least one
status change option is specifi ed, only the specifi ed states are mapped.

Sample command defi nitions to check that an SMTP server is not listening, and to
verify that a user can't log into a POP3 server are as follows:

 define command
 {
 command_name check_nosmtp
 command_line $USER1$/negate $USER1$/check_smtp –H $HOSTADDRESS$
 }

 define command
 {
 command_name check_pop3loginfailure
 command_line $USER1$/negate –o critical –w ok –c critical
 $USER1$/check_pop -H $HOSTADDRESS$ -E
 –s "USER $ARG1$\r\nPASS $ARG2$\r\n" -d 5
 -e "ogged in"
 }

Overview of Nagios Plugins

[116]

The fi rst example does not use state mapping, and the default ok for critical state
replacement is done. The second example maps the states so that if a server is not
listening or if the user is actually able to log in, it is considered a critical status for
the service.

Summary
The Nagios Plugins Package offers a large variety of checks that can be performed
to monitor your infrastructure. Whether you are an administrator of an IT company
managing a large network, or just want to monitor a small server room, these plugins
will allow you to check the majority of the services that you are currently using.

Nagios offers many plugins for monitoring network-aware applications. These
include generic TCP and UDP checks—whether a service is accepting connections
or not, as well as more complex checks—whether POP3 service accepts a specifi c
username and password. These also include database monitoring checks for
commonly-used database servers. Network-based checks can be used to monitor
all of the hosts within your network from a single Nagios server. This makes them
much easier to be set up.

Another type of check commands are plugins that return information on local
resources—such as CPU usage, disk space, or patches that need to be installed.
These plugins need to be run on the same machine that the results are for. However,
using the techniques that we will cover in Chapters 7 and 8, they can also be used to
monitor resources on all machines across your network.

Choosing which plugin to use for performing a check is usually not a diffi cult thing
to do. However, it requires learning what each plugin can check. This allows you to
familiarize yourself with the advanced features of the plugin, such as monitoring
replication for MySQL, and how to fi lter processes when monitoring resources.
Having such knowledge will defi nitely allow to monitor your infrastructure much
more effi ciently.

Advanced Configuration
Any experienced administrator knows that there is a huge difference between a
working system and a properly confi gured system. This chapter describes some
guidelines which will help you migrate from small (and increasing over time)
Nagios setups to a fl exible model using templates and grouping effectively. Using
this advice will help you and your team to survive the switch from monitoring only
critical services to checking the health of the majority of your IT infrastructure.

Things that worked fi ne when you monitored ten hosts and fi fty services might
not work when your confi guration grows. It is possible to defi ne hundreds of hosts
along with thousands of services by hand. Maintaining and applying changes to
such confi gurations is a nightmare, though—imagine going through all of these host
defi nitions just to change the notifi cation interval or retry count for all of them.

When you manage a large number of objects, it is essential to be able to set
parameters for each of them in an easy way. This is where the Nagios templates
come in handy. You can either use a hierarchical structure, or a fl at structure for all
of the actual object defi nitions. Nagios 3 also offers you the possibility to use more
than one template at once, which is a huge improvement for large confi gurations.
Setting up templates in your environment may vary depending upon a number of
things including your personal preferences.

Defi ning how to create groups, and which objects should be members of which
groups is also a key factor to a good confi guration. These groups can be used to
manage downtimes and to create statistics and reports. They can also be used
to limit the view of an infrastructure to a particular set of machines. A typical
example would be to group hosts per branch of the company they are in—in this
way, viewing machines only in Chicago is much easier. Groups also allow setting
up escalations in a more convenient way—you might want all of your core routers
failing to be escalated to higher management much earlier than a backup server
being offl ine.

Advanced Confi guration

[118]

If you are going to manage all confi guration fi les manually, then it is very important
to plan how to store all your confi guration fi les properly. Larger confi gurations call
for better fi le placing and naming conventions. Otherwise, it is easy to get lost in all
the fi les and directories that various people create in any way they prefer.

This chapter mainly focuses on how to set up templates, groupings, and the directory
structure. However, creating a robust monitoring system involves much more—be
sure to read the following chapters that talk about monitoring other servers, setting
up multiple hosts that use Nagios to monitor your network and report to a single
central machine, as well as how to monitor hosts running the Microsoft Windows
operating system.

Maintainable Configurations
 The effort involved in setting up and maintaining a system that monitors your
company's IT infrastructure is enormous. Usually, it can take months to confi gure it
for several hundred machines. The effort required will also depend upon the scope
of hosts and services that should be tracked—the more precise the checks need to be,
the more the time needed to set these up.

If your company plans to monitor a wide range of hosts and services, you should
consider setting up a machine dedicated to Nagios that will only take care of this
single job. Even though a small Nagios installation consumes little resources, as it
grows, Nagios will start using up more resources. If you set it up to run on the same
machine as business-critical applications, it can lead to problems. Therefore, it is
always best to set up a dedicated Nagios box, even if this is on a slower machine,
right from the beginning.

Very often, a good approach is to start with monitoring only critical parts of your
network, such as routers and main servers. You can also start off with only making
sure essential services are working—DHCP, DNS, fi le sharing, and databases are
good examples of what is critical. Of course, if your company does not use fi le
servers, or databases are not critical to the production environment, you can also
skip these. The next step would be to set up parenting and start adopting more
hosts. At some point, you will also need to start planning how to group hosts and
services. In the beginning, the confi guration might simply be defi nitions of people,
hosts and services. After several iterations of setting up more hosts and services to
be monitored, you should get to a point where all of the things that are critical to the
company's business are monitored. This should be an indication that your setting up
of Nagios confi guration is complete.

Chapter 5

[119]

As the number of objects grows, you will need to group them. Contacts need to be
defi ned as groups because if your team consists of more than one to two people, they
will likely rotate over time. So it's better to maintain a group than change the people
responsible for each host individually. Hosts and services should be grouped for
many reasons. Firstly, it makes viewing the status and infrastructure topology on the
web interface much easier. Secondly, after you start defi ning escalations for your
objects, it is much easier to manage these using groups.

You should take some time to plan how group hosts and services should be set up.
How will you use the groupings? For escalations? For viewing single host groups via
the web interface? Learn how you can take advantage of this functionality and then
plan how you will approach the set-up of your groups.

 When defi ning objects that Nagios should monitor, you often come across a service
that is common to all types of machines—such as the SSH server for all Linux servers
and telnet for all AIX (Advanced Interactive eXecutive) ones. In such cases, it is
possible to defi ne a service only once and tell Nagios which hosts or host groups
the service should be bound to. For example, by telling it that all Linux servers offer
SSH, and that all AIX servers offer telnet, it will automatically add such services to
all of the machines in these groups. Therefore, if your network has some common
services, it is better to defi ne them for particular groups, but only once.

In such cases, you should either set up a new host group or use an existing one to
keep track of the hosts offering a particular service. Combined with keeping a list of
host groups inside each host defi nition, this makes things much easier to manage—
disabling a particular host also takes care of the corresponding service defi nitions.

It is also worth mentioning that Nagios performs and schedules service checks in a
much better way than it does host checks. In Nagios version 1 and 2, only a single
host check could be running at a time, with all other service checks at halt. That is
why, it is recommended that you do not schedule host checks at all. You can set up
a separate service for your hosts that will send a ping to them and report how many
packets have returned, and the approximate time taken for them to return.

 Nagios can be set up to schedule host checks only of one of the hosts is failing (is
not responding to the pings). A host will be periodically checked until it recovers.
In this way, problems with hosts will still be detected, but host checks will only be
scheduled on demand. This will cause Nagios to perform much better than it would
if regular checks of all hosts on your network are made. To disable regular host
checks, simply don't specify check interval for the hosts that you want checked only
on demand.

Nagios 3 includes many improvements in this area, but it is still recommended that
you schedule service checks regularly and don't tell Nagios to perform regular host
checks. This is especially good in environments that have a lot of hosts.

Advanced Confi guration

[120]

Configuration File Structure
 A very important issue is how to store all our confi guration fi les. We can put
every object defi nition in a single fi le, but this will not make it easy to manage. As
mentioned in Chapter 2, Installation and Confi guration, the recommendation is to store
different types of objects in separate folders.

Assuming your Nagios confi guration is in /etc/nagios, it is recommended that you
create folders for all types of objects in the following manner:

/etc/nagios/commands
/etc/nagios/timeperiods
/etc/nagios/contacts
/etc/nagios/hosts
/etc/nagios/services

Of course, these fi les will need to be added to the nagios.cfg fi le. After having
followed the instructions in Chapter 2, these directories should already be added to
our main Nagios confi guration fi le.

 It would also be worthwhile to use a version control mechanism such as CVS
(Concurrent Versions System, visit http://www.cvshome.org/) or SVN
(Subversion, visit http://subversion.tigris.org/) to store your Nagios
confi guration. While this will add overhead to the process for applying confi guration
changes, it will also save you from someone overwriting a fi le accidentally. It will
also keep track of who changed which parts of the confi guration, so you always
know whom to blame if things break down.

You might consider writing a simple script that will perform an export from CVS
into a temporary directory, verify that Nagios works fi ne using the nagios -v
command and, only if that did not fail, copy the new confi guration in place of the
older one and restart Nagios.

 As for naming the fi les themselves—for time periods, contacts, and commands,
it is recommended that you keep single defi nitions per fi le, as in contacts/
nagiosadmin.cfg. This greatly reduces naming collisions and also makes it much
easier to fi nd particular object defi nitions.

Storing hosts and services might be done in a slightly different way—host defi nitions
should go to the hosts subdirectory and the fi le should be named the same as the
host name, for example, hosts/localhost.cfg. Services can be split into two
different types and stored depending on how they are defi ned and used.

Services that are associated with more than one host should be stored in the services
subdirectory. A good example is the SSH service, which is present on the majority
of systems. In this case, it should go to services/ssh.cfg and use host groups to
associate it with the hosts that actually offer connecting over this protocol.

Chapter 5

[121]

Services that are specifi c to a host should be handled differently. It's best to store
them in the same fi le as the host defi nition. A good example might be checking disk
space on partitions that might be specifi c to a particular machine such as checking
the /oracle partition on a host that's dedicated to Oracle databases.

Our recommendation for handling groups is to create fi les called groups.cfg and
defi ne all groups in it, without any members. Then while defi ning a contact, host,
or group, you can defi ne which groups it belongs to by using the contactgroups,
hostgroups or servicegroups directives accordingly. This way, if you disable a
particular object by deleting or commenting out its defi nition, the defi nition of the
group itself will still work.

If you plan on having a large number of both check command and notify command
defi nitions, you may want to split this into two separate directories—checkcommands
and notifycommands. You can also use a single commands subdirectory, prefi x the
fi le names, and store the fi les in a single directory, for example, commands/check_
ssh.cfg and commands/notify_jabber.cfg.

Defining Dependencies
 It is a very common scenario that computers, or the applications they offer, depend
on other objects to function properly. A typical example is a database that an email
or web server will depend upon. Another one is a host behind a private network
depends that on an OpenVPN service to work. As a system administrator, your job
is to know these relations—if you plan to reinstall a database cluster, you need to let
people know there will be downtime for almost all applications. Nagios should also
be aware of such relations.

In such cases, it is very useful for system monitoring software to consider these
dependencies. When analyzing which hosts and services are not working properly, it
is good to analyze such dependencies and discard things that are not working because
of other failures. This way, it will be easier for you to focus on the real problems.
Therefore, it allows you to get to the root cause of any malfunction much faster.

 Nagios allows you to defi ne how hosts and services depend on each other. This allows
very fl exible confi gurations and checks, and distinguishes it from many other less
advanced system monitoring applications. Nagios provides very fl exible mechanisms
for checking hosts and services—it will take all dependencies into account. This means
that if a service relies on another one to function properly, Nagios will perform checks
to make sure that all dependant services are working properly.

Advanced Confi guration

[122]

In case a dependant service is not working properly, Nagios may or may not perform
checks, and may or may not send out any notifi cations, depending on how the
dependency is defi ned. This is logical as the service will most probably not work
properly if a dependant object is not working.

Nagios also offers the ability to specify parents for hosts. This is, in a way, similar to
dependencies, as both specify that one object depends on another object. The main
difference is that parents are used to defi ne the infrastructure hierarchy. Parent
defi nitions are also used by Nagios to skip checks for hosts that will obviously be
down. Dependencies, on the other hand, can be used to suppress notifi cations about
the problems that are occurring due to dependant services being down, but they do
not necessarily cause Nagios to skip checking a particular host or service. Another
difference is that parents can only be specifi ed for hosts, whereas dependencies can
be set up between hosts and services.

Dependencies also offer more fl exibility in terms of how they are confi gured. It is
possible to specify which states of the dependant host or service will cause Nagios
to stop sending out notifi cations. You can also tell Nagios when it should skip
performing checks, based on the status of the dependant object.

Dependencies might also be valid only at certain times—for example a back-up
service that needs to be monitoring your system all of the time, but that needs to
have access to networked storage only between 11 PM and 4 AM.

 To aid in describing how objects depend on each other, Nagios documentation uses
two terms—master and dependent objects. When defi ning dependency, a master
object is the object that needs to be working correctly in order for the other object to
function. Similarly, the dependent object is the one that needs another object in order
to work. This terminology will be used throughout this section, to avoid confusion.

 Let's start with host dependency defi nitions. These are objects that have several
attributes, and each dependency can actually describe one or more dependencies—
for example, it is possible to tell Nagios that 20 machines rely on a particular host in
a single dependency defi nition.

Here is an example of a dependency specifying that during maintenance, a Windows
backup storage server in another branch depends upon a VPN server.

 define hostdependency
 {
 dependent_host_name backupstorage-branch2
 host_name vpnserver-branch1
 dependency_period maintenancewindows
 }

Chapter 5

[123]

The following table describes all of the available directives for defi ning a host
dependency. Items in bold are required when specifying a dependency:

Option Description
dependent_host_name Defi nes host names that are dependent on the

master hosts, separated by commas
dependent_hostgroup_name Defi nes host group names whose members are

dependent on the master hosts, separated by
commas

host_name Defi nes master hosts, separated by commas
hostgroup_name Defi nes host groups whose members are to be

master hosts, separated by commas
inherits_parent Whether dependency should inherit dependencies

of master hosts
execution_failure_criteria Specifi es which master host states should prevent

Nagios from checking the dependant hosts,
separated by commas; can be one or more of the
following:
n—none; checks should always be executed
p—pending state (no check has yet been done)
o—host UP state
d—host DOWN state
u—host UNREACHABLE state

notifi cation_failure_criteria Specifi es which master host states should be
prevented from generating notifi cations about
dependent host status changes, separated by
commas; can be one or more of the following:
n—none; notifi cation should always take place
p—pending state (no check has yet been done)
o—host UP state
d—host DOWN state
u—host UNREACHABLE state

dependency_period Specifi es time periods during which the
dependency will be valid; if not specifi ed, the
dependency is always valid

The question is where to store such dependency fi les. As for service defi nitions, it
is recommended that you store dependencies specifi c to a particular host in the fi le
containing the defi nition of the dependent host. For the previous example, we would
put it in the hosts/backupstorage-branch2.cfg fi le.

Advanced Confi guration

[124]

 When defi ning a dependency that will describe a relationship between more
than one master or dependant host, it's best to put these into a generic fi le for
dependencies—for example, we can put it in hosts/dependencies.cfg. Another
good option is to put dependency defi nitions that only affect a single master host in
the master host's defi nition.

If you are defi ning a dependency that covers more than one master or dependent
host, it is best to use host groups to manage the list of hosts that should be included
in dependency's defi nition. This can be one or more host group names, and very
often, these groups will also be the same as for the service defi nitions.

Service dependencies work in a similar way as host dependencies. For hosts, you
need to specify one or more master hosts and one or more dependant hosts; for
services, you need to defi ne a master service and a dependent service.

Service dependencies can be defi ned only for a single service, but on multiple hosts.
For example, you can tell Nagios that POP3 services on the emailservers host
group depend on the LDAP service on the ldapserver host.

Here is an example of how to defi ne such a service dependency:

 define servicedependency
 {
 host_name ldapserver
 service_description LDAP
 dependent_hostgroup_name emailservers
 dependent_service_description POP3
 execution_failure_criteria c,u
 notification_failure_criteria c,u,w
 }

The following table describes all available directives for defi ning a service
dependency. Items in bold are required when specifying a dependency.

Option Description
dependent_host_name Defi nes host names whose services should

be taken into account for this dependency,
separated by commas

dependent_hostgroup_name Defi nes host group names whose members'
services should be taken into account for this
dependency, separated by commas

dependent_service_description Defi nes service that should be the dependent
service for all specifi ed dependant hosts

Chapter 5

[125]

Option Description
host_name Defi nes the master hosts whose services should

be taken into account by this dependency,
separated by commas

hostgroup_name Defi nes the master host groups whose
members' services should be taken into account
by this dependency separated by commas

service_description Defi nes the service that should be the master
service for all provided master hosts

inherits_parent Specifi es whether this dependency should
inherit the dependencies of master hosts

execution_failure_criteria Specifi es which master service states should
prevent Nagios from checking dependent
services, separated by commas; can be one or
more of the following:
n—none; checks should always be executed
p—pending state (no check has yet been done)
o—service OK state
w—service WARNING state
c—service CRITICAL state
u—service UNKNOWN state

notifi cation_failure_criteria Specifi es which master service states should
be prevented from generating notifi cations for
dependent service status changes, separated by
commas; can be one or more of the following:
n—none; checks should always be executed
p—pending state (no check has yet been done)
o—service OK state
w—service WARNING state
c—service CRITICAL state
u—service UNKNOWN state

dependency_period Specifi es the time periods during which the
dependency will be valid; if not specifi ed, the
dependency is always valid

Similar to host dependencies, there is a question on where to store service
dependency defi nitions. A good answer to this is to store dependencies in the same
fi les where the dependent service defi nitions are kept. If you are following the
previous suggestions regarding how to keep services in the fi le structure, then for
a service bound to a single host, both service and the related dependencies should
be kept in the same fi le as the host defi nition itself. If a service is used by more than
one host, it is kept in a separate fi le. In this case, dependencies related to that service
should also be kept in the same fi le as the service.

Advanced Confi guration

[126]

Using Templates
 Templates in Nagios allow you to create a set of parameters that can then be used
in the defi nitions of multiple hosts, services, and contacts. The main purpose of
templates is to keep parameters that are generic to all objects, or a group of objects,
in one place. This way, you can avoid putting the same directives in hundreds of
objects, and your confi guration is more maintainable.

It is also good to start using templates for hosts and services, and decide how they
should be used. Sometimes, it is better to have one template inherit another and
create a hierarchical structure. In many cases, it is more reasonable to create hosts so
that they use multiple templates—this is new functionality in Nagios 3, so it will not
work for Nagios 2 confi gurations. This functionality allows inheriting some options
from one template, and some parameters from another template.

The following is an illustration of how the templates can be structured using both
techniques:

Hierarchical template structure

unix

Critical Windows server
Miami

non-criticalcritical

generic-host

Non-critical Unix
Los Angeles

Actual host definition Actual host definitions

Miami

LA

Hierarchical template structure

crit-win unix win

c-w-Miami

c-w-LA

u-Miami

u-LA

w-miami

w-LA

Critical Windows server
Miami

non-criticalcritical

generic-host

Non-critical Unix
Los Angeles

win

c-u-LA

c-u-Miami

crit-unix

This example illustrates how the templates can be structured using both hierarchy
and multiple templates inheritance. This diagram shows how to use templates for
host defi nitions. Similar rules apply for services as well, but the inheritance structure
might be quite different.

I n both of the methods shown above, there is a distinction between critical and
non-critical servers. Hosts are also split into ones that are UNIX based and ones
that are Microsoft Windows based. There is also a distinction between the two
branches that are confi gured—Miami and LA (Los Angeles). Furthermore, there is
also a generic-host template that is used by every other template.

Chapter 5

[127]

Usually, such distinctions make sense as Windows and UNIX boxes might be
checked differently. Based on the operating system and the location of the machine,
different people should be assigned as contacts in case of problems. There may also
be different time periods during which these hosts should be checked.

The example on the left shows the inheritance of one type of parameter at a time.
First, a distinction is made between critical and non-critical machines. Usually, both
types have different values for the notifi cation and check intervals, as well as the
number of checks to perform before generating a notifi cation for a problem. The next
step is to differentiate between Microsoft Windows and UNIX based servers—this
might involve check command to verify that a server is up. The last step is to defi ne
templates for each system in both of the branches (Miami and LA). The actual host
defi nition inherits from one template in the fi nal set of templates.

The example on the right uses a slightly different approach. It fi rst defi nes different
templates for UNIX and Windows systems. Next, a pair of templates for critical
and noncritical machines is also defi ned. Finally, a set of templates defi nes the
branches—Miami and LA. The actual host defi nition inherits templates for the
operating system, for the level of criticality, and for the branch it belongs to. It
inherits parameters partially from each of the templates.

In both cases, attributes that are passed at different levels are the same, even though
the approach is different. Usually, the templates that defi ne the operating system
also defi ne how a host check should be done. They might also indicate the time
period over which a host should be checked.

T emplates for critical and noncritical machines usually specify how notifi cations
should be carried out. If a host is crucial to infrastructure, its owners should be
notifi ed in a more aggressive way. Similarly, machines that are not affecting business
directly do not need that much attention.

Templates for locations usually defi ne the owners of the machines. The locations
are not always branches, as in this example; they can be branches, fl oors, or even
network connection types. Locations can also point machines to their parent hosts—
usually computers located in the same place that are connected to the same router.

Even though the previous example shows an approach typical of hosts, templates for
other types of objects work in a similar way. The main difference is that templates for
contacts and services are usually less structured.

Contacts usually use only a couple of templates. They depend on the working
hours and the notifi cation preferences. The remaining parameters can be kept in an
individual contact's defi nition. Very often, users may have their own preferences on
how they should be notifi ed, so it's better not to try and design templates for that.

Advanced Confi guration

[128]

Services usually use a similar approach as the one for hosts. It is a good idea to defi ne
templates for branches depending on the priority of service. Good confi gurations
tend to have many more hosts than service defi nitions. This is because it's better to
defi ne services common to multiple machines once, and to use groups to manage
hosts that should be associated with this service.

Defi ning templates in Nagios is very similar to defi ning actual objects. You simply
defi ne the template as the required object type. The only difference is that you need
to specify the register directive and specify a value, of 0 for it. This will tell Nagios
that it should not treat this as an actual object, but as a template. You will also need
to use the name directive for defi ning template names. You do not need to specify
other directives for naming objects such as host_name, contact_name, or
service_description.

When defi ning an object, simply include the use directive and specify all of the
templates to be used as its value. If you want to inherit from multiple templates,
separate all of them by commas.

T he following is an example on how to defi ne a template for a Linux server and then
use this in an actual host defi nition:

 define host
 {
 register 0
 name generic-servers
 check_period 24x7
 retry_interval 1
 check_interval 15
 max_retry_attempts 5
 notification_period 24x7
 notification_interval 60
 notification_options d,r
 }

 define host
 {
 register 0
 use generic-servers
 name linux-servers
 check_command check-host-alive
 contact_groups linux-admins
 }

 define host
 {
 use linux-servers
 host_name ubuntu1
 address 192.168.2.1
 }

Chapter 5

[129]

As mentioned earlier, templates use name for defi ning the template, and the actual
host uses the host_name directive.

Nagios 3 allows you to inherit from multiple templates, and templates using other
(nested) templates. It's good to know how Nagios determines the order in which
every directive is looked for in each of the templates. When inheriting attributes from
more than one template, Nagios tries to fi nd the directive in each of the templates,
starting from the fi rst one. If it is found in the fi rst template, that value is used; if
not, Nagios checks for a value in the second one. This cycle continues until the last
template in the list. If any of the templates is also inheriting from another template,
then a check for the second level of templates is done recursively. This means that
checking for a directive will perform a recursive check of all of the templates that are
inherited from the currently-checked one.

The following illustration shows an example of this situation. The actual host
defi nition inherits three templates—B, F, and G. Template B inherits A, F inherits D
and E and fi nally, D inherits attributes from template C.

Template C

Template ETemplate A

Template F

Template D

Template GTemplate B

Host Definition

use Template B, Template F, Template G

use Template A use Template D, Template E

use Template C

Order of
preference

Template B
Template A
Template F
Template D
Template C
Template E
Template G

1
2
3
4
5
6
7

If Nagios tries to fi nd any directive related to this host, the fi rst thing that will be
checked is the actual host defi nition. If the host does not include the directive,
Nagios will fi rst look under B, as this is the fi rst template that should be used. If it
is not found in B, Nagios will recursively try to fi nd the attribute in A, as it is used
by template B. The next step is to look in F along with all of the templates it is using.
F inherits D and E. The fi rst one to check is B along with all parent templates—this
dictates that D, C, and the next E should now be checked. If the attribute is still not
found, then template G is used.

Advanced Confi guration

[130]

Let's assume the following directives (among others) are defi ned for the
previous illustration:

 define host
 {
 register 0
 name A
 check_period workinghours
 retry_interval 1
 check_interval 15
 }

 define host
 {
 register 0
 use A
 name B
 check_period 24x7
 }

 define host
 {
 register 0
 name D
 use C
 max_retry_attempts 4
 }

 define host
 {
 register 0
 name E
 max_retry_attempts 3
 }

 define host
 {
 register 0
 use D,E
 name F
 notification_interval 30
 }

 define host
 {
 use B,F,G
 host_name ubuntu1
 address 192.168.2.1
 notification_interval 20
 }

Chapter 5

[131]

For this particular example, the values for address and notification_interval
directives are taken directly from the host ubuntu1 defi nition. Even though
notification_interval is also defi ned in F, it is overwritten by the actual
host defi nition.

The value for max_retry_attempts is taken from the template D—regardless of
whether it is also defi ned in C or not. Even though the template E also defi nes a value
for it, as D is put before E, the values defi ned in both of them are taken from D.

The value for check_period is taken from B, which overwrites the value defi ned for
the template A. Values for retry_interval and check_interval are taken from A.

C ustom Variables
Cu stom variables allow you to include your own directives when defi ning objects.
These can then be used in commands. This allows you to defi ne objects in a more
concise way and defi ne service checks in a more general fashion. This functionality
was introduced in Nagios 3, and is not available in the previous versions.

The idea is that you defi ne directives that are not standard Nagios parameters in
host, service, or contact objects, and they can then be accessed from all commands—
check commands, notifi cations, and event handlers. This is very useful for complex
Nagios confi gurations where you might want commands to perform nontrivial tasks
for which they will require additional information.

Let's assume we want Nagios to check that hosts have correct MAC addresses. In
Nagios 2, we would need to use a separate service check defi nition for each host and
specify the MAC address in each of them. With Nagios 3, we can defi ne a custom
variable to store the MAC address for all or some of the hosts. We can then defi ne a
service once and use that custom variable for the check command.

When defi ning an object, a custom variable needs to be prefi xed with an underscore
and written in upper case. Custom variables are then accessible from check
commands as the following macros:

$_HOST<variable>$—for directives defi ned within a host object
$_SERVICE<variable>$—for directives defi ned within a service object
$_CONTACT<variable>$—for directives defi ned within a contact object

For the example above, a macro defi nition would be $_HOSTMAC$.

•

•

•

Advanced Confi guration

[132]

The following is an example of a contact and notifi cation command that uses a
custom variable for the Jabber address:

 define contact
 {
 contact_name jdoe
 alias John Doe
 host_notification_commands host-notify-by-jabber
 _JABBERID jdoe@jabber.yourcompany.com

 }

 define command
 {
 command_name host-notify-by-jabber
 command_line $USER1$/notify_via_jabber $_CONTACTJABBERID$
 "Host $HOSTDISPLAYNAME$ changed state to
 $HOSTSTATE$"
 }

Of course, you will also need a plugin to send notifi cations over Jabber. This can be
downloaded from the Nagios project on SourceForge (visit http://nagios.sf.net/
download/contrib/notifications/notify_via_jabber). The previous example
will work with any other protocol you might be using. All that's needed is a plugin
that will send commands over such a protocol.

A very useful client called EKG2 (visit http://www.ekg2.org/) allows you to send
messages over various protocols including, Jabber, and has a pipe that can be used to
send messages over these protocols. A sample command to do this can be as follows:

 define command
 {
 command_name host-notify-by-ekg2
 command_line /usr/bin/printf "%b" "msg $_CONTACTEKGALIAS$
 Host $HOSTDISPLAYNAME$ changed state to
 $HOSTSTATE$\n" >>~/.ekg2/.pipe
 }

A major benefi t of custom variables is that they can also be changed on the fl y over
an external command pipe. This way, the custom variables functionality can be
used in more complex confi gurations. Event handlers may trigger changes in the
attributes of other checks.

An example might be that a ping check with 50ms and 20% packet loss limits is made
to ensure that the network connectivity is working correctly. However, if the main
router is down and a failover connection is used, the check is set to a more relaxed
limits of 400ms and 50% packet loss.

Chapter 5

[133]

An example confi guration might be as follows:

 define service
 {
 host_name router2
 service_description PING
 check_command check_ping_limits
 _LIMITS 50.0,20%

 }

 define command
 {
 command_name check_ping_limits
 command_line $USER1$/check_ping –H $HOSTADDRESS$
 -w $_SERVICELIMITS$ -c $_SERVICELIMITS$
 }

Then, when a service that checks if the main router is up, is in a hard critical state, an
event handler will invoke a change in the limits by sending a CHANGE_CUSTOM_SVC_
VAR command (http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php?command_id=140) over the external commands pipe to set the
_LIMITS custom variable.

Ch apter 6, Notifi cation and Events covers event handlers and external commands pipe
in more detail. So it is recommended that you read this chapter in order to better
understand this approach.

Flapping
Fl apping is a situation where a host or service changes states very rapidly—
constantly switching between working correctly and not working at all. This can
happen for various reasons—a service might crash after a short period of operating
correctly or due to performing some maintenance by system administrators.

Nagios can detect that a host or service is fl apping, if Nagios is confi gured to do so. It
does so by analyzing previous results, in terms of how many state changes between
have happened and within a specifi c period of time. Nagios keeps a history of the 21
most recent checks and analyzes changes within that history.

Advanced Confi guration

[134]

The following is an image illustrating the 21 most recent check results, which means
that Nagios can detect up to 20 state changes in the recent history of an object. It also
shows how Nagios detects state transitions:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

recent scans

1 2 20 21 scan

ho
st

/s
er

vi
ce

s
st

at
e

older scans

Legend

CRITICAL status WARNING status

OK status state transition

Nagios then fi nds all of the changes between different states, and uses them to
determine if a host or service is fl apping—it checks too see if a state is the same as the
result from the previous check, and if it has changed, a state transition is counted at
this place. In the example above, we have three transitions in all.

Nagios calculates a fl apping threshold based on this information—the value refl ects
how many of the state changes have occurred recently. If there are no changes in the
last 21 state checks, the value would be 0%. If all checks have different states, the
fl apping threshold would be 100%.

Nagios also differentiates older results from newer ones. This means that a state
transition that took place during the 18th previous check will cause the fl apping
threshold to be much lower than a transition that took place during the 3rd
previous check.

In our case, if Nagios would only take the number of transitions into account, the
fl apping threshold would be 45%. The weighted algorithm used in Nagios would
calculate the fl apping threshold as being more than 45% as there have been many
changes in the more recent checks.

Nagios takes threshold values into consideration when estimating whether a host or
service has started or stopped fl apping. The confi guration for each object allows the
defi nition of low and high fl apping thresholds.

If an object was not previously fl apping, and the current fl apping threshold is equal to
or greater than the high fl ap threshold, Nagios assumes that the object has just started
fl apping. If an object was previously fl apping, and the current threshold is lower than
the low fl ap threshold, Nagios assumes the object has just stopped fl apping.

Chapter 5

[135]

The following chart shows how the fl apping threshold for an object has changed
over time, and when Nagios assumed it started and stopped fl apping. In this case,
the high fl ap threshold is set to 40%, and the low fl ap threshold is set to 25%. Red
vertical lines indicate when Nagios assumed the fl apping to have started and
stopped, and the grey area shows where the service was assumed to be fl apping.

It is worth noting that the low fl ap threshold should be lower than the high fl ap
threshold. This prevents the situation where after one state transition, fl apping would
be detected and the next check would tell Nagios that the object has stopped fl apping.
If both the attributes are set to the same value, an object might be identifi ed as having
started and stopped fl apping often. This can happen when the fl apping threshold
changes from below threshold to above threshold, or vice-versa. This might cause
Nagios to send out large number of notifi cations and cause its performance to degrade.

Sum mary
Nagios confi guration can either be your friend or your enemy. We recommend
getting be friends with it as it can be a lifesaver.

When deploying Nagios in your company, it would be worthwhile planning
the layout of your entire confi guration. Some people recommend one fi le for each
single defi nition, while others recommend storing things in a single fi le per
host. We recommend keeping similar things in the same fi le and maintaining
a directory-based set of fi les.

Advanced Confi guration

[136]

Defi ning parent hosts and dependencies between hosts and services would also be
benefi cial if you want Nagios to help you track down the root cause of a problem.
This will skip check against hosts and services that are in error due to the other
problems in your network. Of course, if you don't defi ne those, Nagios will still
work, will still perform very useful checks, but you will be on your own in analyzing
what happened because of what.

In order for Nagios and you to get along well, it would also be good to use templates
for the things you defi ne in the confi guration. This allows you to have various
directives in one or more templates instead of having them scattered across the entire
confi guration. Such confi gurations have much greater fl exibility and are easier to
maintain over time. The drawback is that if your company won't have any guidelines
as to how templates should be created and used—in terms of approach, naming and
fi le locations—you might still run into having a confi guration that's a nightmare
to update.

A great feature added in Nagios 3 is custom variables. These allow you to put any
data you like into your object confi gurations and use them inside commands. These
values can also be modifi ed on the fl y from event triggers or external applications,
and allow more complex solutions to be built based on Nagios.

Nagios also offers a way to detect fl apping—a situation where a host or service
constantly switches states—for example, between working correctly and failing.
Nagios can be confi gured to ignore this, act upon it, and how Nagios detects the case
can also be fi ne-tuned to your needs.

Notifications and Events
We already know how notifi cations work in Nagios. The previous chapters described
how Nagios sends information to the users when a problem occurs, and how it
decides to notify people. Previously, our examples were limited to sending an email
24 hours a day or only during working days.

There is a lot more to what Nagios can do, and how it can make your life easier.
Imagine that you set up Nagios to send a text message to your mobile during
day time. It can also send you a message on Jabber or MSN. Imagine that you also
make Nagios stop notifying you when your workstation is not online.

Even though the above examples above seem complicated, they are actually
quite simple to implement. It's a matter of combining event handlers with custom
variables, and a little ingenuity. A service that will check if a user's workstation is
present can have an event handler to automatically enable and disable host and/or
service notifi cations for a contact or contact group.

It's also possible to set up your monitoring to notify managers if the issue has not
been fi xed within a certain period of time. Based on the importance of a host or
service, these can be different managers that are notifi ed and different time periods
after which the notifi cation is sent. Nagios can also be used to notify emergency
response teams so that if a problem is not fi xed in a short period of time, they will
assist in recovering from the potential after effects of this problem.

There are cases when you want Nagios to perform one or more actions if a service
starts or stops malfunctioning. For instance, you might have a web server set up to
retry fi ve times before a failure becomes a hard state for Nagios. In such a case, you
can also confi gure Nagios to try restarting itself after the third soft failure—if it fails,
it will move to a hard state after the next two failures. In case the restart succeeds, a
hard state will not even get recorded and only a soft failure will get logged.

Notifi cations and Events

[138]

Nagios is able to integrate itself with other applications that can send commands
to Nagios directly and can report the status of host or service checks. Sending
commands can be used by Nagios web interface, but you might as well use it inside
your application or event handlers for various objects.

Effective Notifications
 This section covers notifi cations in more depth and describes the details of how Nagios
can tell other people about what is happening. We will discuss a simple approach, as
well as a more complex approach on how notifi cations can make your life easier.

Probably, most people already know that a plain email notifi cation about a problem
may not always be the right thing to do. As people's inboxes get cluttered with
emails, the usual approach is to create rules to move certain messages that they don't
even look at to separate folders. There's a pretty good chance that if people start
getting a lot of notifi cations that they won't need to react to, they'll simply ask their
favorite mailing program to move these messages into a 'do not look in here unless
you have plenty of time' folder. Moreover, in such cases, if there is an issue they
should be handling, they will most probably not even see the notifi cation email.

This section talks about the things that can be implemented in your company to
make notifi cations more convenient to the IT staff. Limiting the amount of irrelevant
information sent to various people tends to increase their response time, as they will
have much less information to fi lter out.

The fi rst issue that many Nagios administrators overlook is the ability to create more
than one notifi cation command. In this way, Nagios can try to notify you on both
instant messaging (such as Jabber/Gtalk, MSN, or Yahoo) and email. It can also
send you an SMS. A disadvantage is that at some point, you might end up receiving
SMSes at 2 AM about an outage of a machine that may well be down for the next 3
days and is not critical.

At this point, it's worth mentioning that there's another easy solution. Again, most
people do not use it even though it offers a very fl exible set up in an easy way. The
approach is to create multiple contacts for a single person. For example, you can set
up different contacts when you're at work, when you're offl ine, and defi ne a profi le
to not to disturb you too much during the night.

For example you can set up the following contacts to handle various times of the day
in a different fashion:

jdoe-workhours would be a contact that will only receive notifi cations
during working hours; notifi cations will be carried out using both the
corporate IM system and an email

•

Chapter 6

[139]

jdoe-daytime would be a contact that will only receive notifi cations
between 7 AM and 10 PM, excluding working hours; notifi cations will be
sent as a text or a pager message, and an email
jdoe-night would be a contact that will only receive notifi cations between
10 PM and 7 AM; notifi cations will only be sent out as an email

All entries would also contain contactgroups pointing to the same groups that the
single jdoe contact entry used to contain. This way, the other objects such as hosts,
services, or contact groups related to this user would not be affected. All entries
would also reside in the same fi le; for example, contacts/jdoe.cfg.

 The main drawback of this approach is that logging on to the web interface would
require using one of the users above or keeping the jdoe contact without any
notifi cations, just to be able to log on to the interface.

The example above combined both the creation of multiple contacts and use of
multiple notifi cation commands to achieve a convenient way of getting notifi ed
about a problem. Using only multiple contacts also works fi ne. Another approach to
the problem is to defi ne different contacts for different ways of being notifi ed—for
example, jdoe-email, jdoe-sms, and jdoe-jabber. This way, you can defi ne
different contact methods for various time periods—instant messages during
working hours, SMSes while on duty, and an email when not at work.

 Another important issue is to make sure that as few people as possible are notifi ed of
the problem. Imagine there is a host without an explicit administrator assigned to it. A
notifi cation about a problem gets sent out to 20 different people. In such a case, either
each of them will assume that someone else will resolve the problem, or people will
run into a communication problem over discussing who will actually handle it.

Teams that cooperate tightly with each other usually solve these issues
naturally—knowledgeable people start discussing a solution and a natural
person to solve the issue comes out of the discussion. However, the teams that are
distributed across various locations or that have poor communication skills will run
into problems in such cases.

This is why, it is a good idea to either nominate a coordinator who will assign tasks
as they arise, or try to maintain a short list of people responsible for each machine.
If you need to make sure that other people will investigate the problem if the
original owner of the machine cannot do it immediately, then it is a good idea to use
escalations for this purpose. These are described later in this chapter.

•

•

Notifi cations and Events

[140]

Previously, we mentioned that notifi cations only via email may not always be the
best thing to do. For example, they don't work well for situations that require fast
response times. There are various reasons behind this. Firstly, emails are slow—even
though the email lands on your mail server in a few seconds, people usually only
poll their emails every few minutes. Secondly, people tend to fi lter emails and skip
those that they are not interested in.

Another good reason why emails should not always be used is that they stay on your
email account until you actually fetch and read them. If you have been on a 2-week
vacation and a problem has occurred, should you still be worried when you read it
after you get back? Has the issue been resolved already?

If your team needs to react to problems promptly, using email as the basic
notifi cation method is defi nitely not the best choice. Let's consider what other
possibilities exist to notify users of a problem effectively.

 As already mentioned, a very good choice is to use instant messaging or SMS
(Simple Messaging Service) messages as the basic means of notifi cation, and only
use email as a last resort. Some companies might also use the client-server approach
to notify the users of the problems, perhaps integrated with showing Nagios'
status only for particular hosts and services. NagiosExchange has plenty of
available solutions you can use for handling notifi cations effectively.
Visit http://www.nagiosexchange.org/ for more details.

 The fi rst and the most powerful option is to use Jabber (visit http://www.jabber.
org/) for notifi cations. There is an existing script for this that is available in the
contributions repository on the Nagios project website (visit http://nagios.sf.net/
download/contrib/notifications/notify_via_jabber). This is a small Perl
script that sends messages over Jabber. You may need to install additional system
packages to handle Jabber connectivity from Perl. On Ubuntu, this requires running
the following command:

root@ubuntu1:~# apt-get install libnet-jabber-perl

If you are using CPAN (visit http://www.cpan.org/) to install Perl packages, then
simply run the following command:

root@ubuntu1:~# cpan install Net::Jabber

In order to use the notifi cation plugin, you will need to customize the
script—change the SERVER, PORT, USER, and PASSWORD parameters to an existing
account. Our recommendation is to create a separate account to use only for Nagios
notifi cations—you will need to set up authorization for each user that you want to
send notifi cations to.

Chapter 6

[141]

As you plan to monitor servers and potentially even outgoing Internet connectivity,
it would not be wise to use public Jabber servers for reporting errors. Therefore, it
would be a good idea to set up a private Jabber server, probably on the same host on
which the Nagios monitoring system is running.

 If you plan to have a more comfortable setup, you can also use Tkabber (visit
http://tkabber.jabber.ru/) as a Jabber client, and write a plugin that reads
object's cache and the current status from the Nagios host and shows an up-to-date
report for hosts that you are the owner of. Information on reading Nagios output
can be found on my Tclmentor blog at http://tclmentor.kocjan.org/search/
label/nagios.

 Another possibility is to send messages over SMB/CIFS protocol
(visit http://en.wikipedia.org/wiki/Server_Message_Block). This way,
you can send messages directly to the computers, assuming people are running
the Microsoft Windows operating system. There is also the possibility of
receiving messages using Samba package on UNIX machines. This requires
having the smbclient command installed. On Ubuntu, this requires running the
following command:

root@ubuntu1:~# apt-get install smbclient

A simple command defi nition example that uses smbclient directly to send
messages to the specifi ed host name is as follows:

 define command
 {
 command_name notify_host_via_smbclient
 command_line printf "Host notification: $NOTIFICATIONTYPE$\n\n
 Host: $HOSTNAME$\n
 State: $HOSTSTATE$
 Address: $HOSTADDRESS$\n
 Info: $HOSTOUTPUT$" |
 smbclient –M $_CONTACTSMBHOSTNAME$
 }

The preceding example uses the $_CONTACTSMBHOSTNAME$ macro defi nition. It maps
to the _SMBHOSTNAME custom variable defi ned for a specifi ed contact.

In order for Windows XP and 2003 to show the messages from other users
correctly, you will need to enable the Messenger service. This can be done by
running the following command as the system administrator, or as a user with
administrator privileges:

C> net start Messenger

Notifi cations and Events

[142]

Another way to communicate problems to the users is to use text messages, also
known as SMS. This is a very sensitive issue because if your system is not properly
confi gured, it can send a message in the middle of a night about a noncritical thing
that can be fi xed within the next 5 working days.

 There is a very useful package for handling of SMS sending called SMSServerTools
(visit http://smstools.meinemullemaus.de/). It allows the confi guration of email
and web gateways, as well as sending text messages over dedicated GSM (Global
System for Mobile Communication; visit http://en.wikipedia.org/wiki/GSM)
terminals. The tool offers the ability to queue text messages so that it handles a
higher number of messages to be sent by the appropriate means.

 GSM terminals work in a manner similar to a typical mobile phone. They use a
standard SIM card and have a normal GSM phone module that is used to send SMS
messages. Terminals are usually connected via a serial port or USB connection. Your
server can then send messages by sending commands to the terminal. GSM terminals
use the same command convention as phone modems, although each model uses a
different set of commands. For information on how you can send SMS messages over
it, please refer the terminal's user manual.

Current mobile phones also offer cheap Internet connectivity, and smart devices
offer the possibility to write custom applications in Java, .NET, and many other
languages including Python and Tcl. Therefore, you can also make a client-server
application that queries the server for the status of selected hosts and services. It can
even be unifi ed with a notifi cation command that pushes the changes down to the
application immediately.

These are only a few of the possibilities that you can use to communicate problems
more effectively.

Other possibilities include a ready-to-use client-server application (visit http://
www.nagiosexchange.org/Notifications.35.0.html?&tx_netnagext_pi1[p_
view]=182) that allows the sending of notifi cations to people directly to their
desktop machines. One interesting notifi cation command allows you to choose other
commands to use based on user availability on Jabber—this sends messages over
Jabber if the user is are available and uses SMSes or emails otherwise. (visit http://
www.nagiosexchange.org/Notifications.35.0.html?&tx_netnagext_pi1[p_
view]=1036)

There are also tools to send messages to ICQ users and ones that use VoIP
technology to provide you with predefi ned wave messages or output from a speech
synthesis system.

Chapter 6

[143]

Escalations
 A common problem with resolving problems is that a host or a service may have
blurred ownership. Often, there is no single person responsible for a host or
service, which makes things harder. It is also typical to have a service with subtle
dependencies on other things, which by themselves are small enough not to be
monitored by Nagios. In such a case, it is good to include lower management in the
escalations so that they are able to focus on problems that haven't been resolved in a
timely manner.

Here is a good example: a database server might fail because a small Perl script
that is run prior to actual start and clean things up has entered an infi nite loop. The
owner of this machine gets notifi ed. But the question is, who should be fi xing it? The
script owner? Or perhaps the database administrator? In IT reality, this often ends up
in a series of throwing ball into each other's yards without solving anything.

In such cases, escalations are a great way to solve such complex problems. In the
previous example, if the problem is not been resolved after two hours, the IT team
coordinator or manager would be notifi ed. Another hour later, he would get another
email. At that point, he would schedule an urgent meeting with the developer who
owns the script, and the database admin, to discuss how this could be solved.

Of course, in real-world scenarios, escalating to management alone would not solve
all problems. However, often, situations need a coordinator that will take care of
communicating issues between teams and trying to fi nd a company-wide solution.
Business-critical services also require much higher attention. In such cases, it is a
real benefi t for the company if it has an escalation ladder that can be followed for all
major problems.

 Nagios offers many ways to set up escalations, depending on your needs. Escalations
do not need to be sent out just after a problem occurs—that would create confusion
and prevent smaller problems from being solved. Usually, escalations are set up so
that additional people are informed only if a problem has not been resolved after a
certain amount of time.

From a confi guration point of view, all escalations are defi ned as separate objects.
There are two types of objects—hostescalation and serviceescalation.
Escalations are confi gured so that they start and stop being active along with the
normal host or service notifi cations. This way, if you change the notification_
interval directive in host or service defi nition, the times at which escalations start
and stop will also change.

Notifi cations and Events

[144]

A sample escalation for company's main router is as follows:

 define hostescalation
 {
 host_name mainrouter
 contactgroups it-management
 first_notification 2
 last_notification 0
 notification_interval 60
 escalation_options d,u,r
 }

The following table describes all available directives for defi ning a host escalation.
Items in bold are required when specifying an escalation.

Option Description
host_name Defi nes the host names that escalation should be defi ned for;

separated by commas
hostgroup_name Defi nes the host group names of the groups for whose members

the escalation should be defi ned; separated by commas
contacts List of all contacts that should receive notifi cations related to this

escalation; separated by commas; at least one contact or contact
group needs to be specifi ed for each escalation

contactgroups List of all contacts groups that should receive notifi cations
related to this escalation, separated by commas; at least one
contact or contact group needs to be specifi ed for each escalation

fi rst_notifi cation The number of notifi cations after which this escalation becomes
active; setting this to 0 causes notifi cations to be sent until host
recovers from the problem; see the following description

last_notifi cation The number of notifi cations after which this escalation stops
being active; see the following description below

notifi cation_interval Specifi es the number of minutes between sending notifi cations
related to this escalation

escalation_period Specifi es the time period during which this escalation should be
valid; if not specifi ed, this defaults to 24 hours a day 7 days
a week

escalation_options Specifi es the host states for which notifi cation types should
be sent, separated by commas; this can be one or more of the
following:
d – host DOWN state
u – host UNREACHABLE state
r – host recovery (UP state)

Chapter 6

[145]

Service escalations are defi ned in a very similar way to host escalations. You can
specify one or more hosts or host groups, as well as a single service description.
Service escalation will be associated with this service on all hosts mentioned in the
host_name and hostgroup_name attributes.

The following is an example of a service escalation for an OpenVPN check on the
company's main router:

 define serviceescalation
 {
 host_name mainrouter
 service_description OpenVPN
 contactgroups it-management
 first_notification 2
 last_notification 0
 notification_interval 60
 escalation_options w,c,r
 }

The following table describes all available directives for defi ning a service escalation.
Items in bold are required when specifying an escalation.

Option Description
host_name Defi nes the host names that the escalation should be defi ned for,

separated by commas
hostgroup_name Defi nes the host group names of the groups for whose members

the escalation should be defi ned, separated by commas
service_description The service for which the escalation is being defi ned
contacts List of all contacts that should receive notifi cations related to this

escalation, separated by commas; at least one contact or contact
group needs to be specifi ed for each escalation

contactgroups List of all contact groups that should receive notifi cations related
to this escalation, separated by commas; at least one contact or
contact group needs to be specifi ed for each escalation

fi rst_notifi cation The number of notifi cations after which this escalation becomes
active; see the following description

last_notifi cation The number of notifi cations after which this escalation stops being
active; setting this to 0 causes notifi cations to be sent until the
service recovers from the problem; see the following description

notifi cation_
interval

Specifi es the number of minutes between sending notifi cations
related to this escalation

Notifi cations and Events

[146]

Option Description
escalation_period Specifi es the time period during which escalation should be valid;

if not specifi ed, this defaults to 24 hours a day 7 days a week
escalation_options Specifi es which notifi cation types for service states should be sent,

separated by commas; this can be one or more of the following:
r—service recovers (OK state)
w—service WARNING state
c—service CRITICAL state
u—service UNKNOWN state

Let's consider the following confi guration—a service along with two escalations:

 define service
 {
 use generic-service
 host_name mainrouter
 service_description OpenVPN
 check_command check_openvpn_remote
 check_interval 15
 max_check_attempts 3
 notification_interval 30
 notification_period 24x7
 }

 # Escalation 1
 define serviceescalation
 {
 host_name mainrouter
 service_description OpenVPN
 first_notification 4
 last_notification 8
 contactgroups it-escalation1
 notification_period 24x7
 notification_interval 15
 }

 # Escalation 2
 define serviceescalation
 {
 host_name mainrouter
 service_description OpenVPN
 first_notification 8
 last_notification 0
 contactgroups it-escalation2
 notification_period 24x7
 notification_interval 120
 }

Chapter 6

[147]

In order to show how the escalations work, let's take an example—a failing service. A
service fails for a total of 16 hours and then recovers—for the clarity of the example,
we'll skip the soft and hard states and the timing required for hard state transitions.

 Service notifi cations are set up so that the fi rst notifi cation is sent out 30 minutes
after failure. Later on, they are repeated every 60 minutes, then the next notifi cation
is sent 1.5 hours after the actual failure and so on. The service also has two
escalations defi ned for it.

 Escalation 1 is fi rst triggered along with the fourth service notifi cation that is sent
out. Escalation stops being active after the eighth service notifi cation on the failure. It
only sends out reports about problems, not recovery. The interval for this escalation
is confi gured to be 15 minutes.

Escalation 2 is fi rst triggered along with the eighth service notifi cation and never
stops— the last_notification directive is set to 0. It sends out reports about
problems and recovery. The interval for this escalation is confi gured to 2 hours.

The diagram above shows when both escalations are sent out. Notifi cations for the
service itself are sent out 0.5, 1.5, 2.5, 3.5 … hours after the occurrence of the initial
service failure.

Escalation 1 becomes active after 3.5 hours—which is when the fourth service
notifi cation is sent out. The last notifi cation related to escalation 1 is sent out 7.5
hours after the initial failure—this is the time when the eighth service notifi cation
is sent out. It is sent every 30 minutes; so a total of nine notifi cations related to
escalation 1 are sent out.

Notifi cations and Events

[148]

E scalation 2 becomes active after 7.5 hours – which is when the eighth service
notifi cation is sent out. The last notifi cation related to escalation 2 is sent out when
the problem is resolved, and concerns the actual problem resolution. It is sent every
two hours, so a total of four notifi cations related to escalation 2 are sent out.

 E scalations can be defi ned to be independent of each other—there is no reason why
Escalation 2 cannot start after the sixth service notifi cation is sent out. There are also
no limits on the number of escalations that can be set up for a single host or service.

The main point is that escalations should be defi ned reasonably, so that they don't
bloat management or other teams with problems that would be solved without their
interference anyway.

E scalations can also be used to contact different people for a certain set of objects,
based on time periods. If an escalation has the first_notification set to 1 and the
last_notification set to 0, then all notifi cations related to this escalation will be
sent out exactly in the same way as notifi cations for the service itself.

F or example, normal IT staff may be handling problems normally, but during
holidays, if notifi cations about problems should also go to the CritSit team, then you
can simply defi ne an escalation saying that during the holidays time period, CritSit
group should also be notifi ed about problems when the fi rst notifi cation is sent out.
The following is an example that is based on the OpenVPN service defi ned earlier:

 define serviceescalation
 {
 host_name mainrouter
 service_description OpenVPN
 first_notification 1
 last_notification 0
 contactgroups CritSit
 notification_period holidays
 notification_interval 30
 escalation_options w,c,r
 }

The defi nitions above specify both the service and its escalation. Please note that the
notification_interval is set to the same value in both the object and the escalation.

Chapter 6

[149]

 External Commands
N agios offers a very powerful mechanism for receiving events and commands from
external applications—the external commands pipe. This is a pipe fi le created on
a fi le system that Nagios uses to receive incoming messages. The name of the fi le
is rw/nagios.cmd and it is located in the directory passed as the localstatedir
option during compilation. If you have followed the compilation and installation
instructions given in Chapter 2 of this book, the fi le name will be /var/nagios/rw/
nagios.cmd.

The communication does not use any authentication or authorization—the only
requirement is to have write access to the pipe fi le. An external command fi le is
usually writable by the owner and the group; the usual group used is nagioscmd. If
you want a user to be able to send commands to the Nagios daemon, simply add that
user to this group.

A small limitation of the command pipe is that there is no way to get any results
back and so it is not possible to send any query commands to Nagios. Therefore,
by just using the command pipe, you have no verifi cation that the command you
have just passed to Nagios has actually been processed, or will be processed soon.
It is, however, possible to read the Nagios log fi le and check if it indicates that the
command has been parsed correctly, if necessary.

An external command pipe is used by the web interface to control how Nagios
works. The web interface does not use any other means to send commands or apply
changes to Nagios. This gives a good understanding of what can be done with the
external command pipe interface.

F rom the Nagios daemon perspective, there is no clear distinction as to who can
perform what operations. Therefore, if you plan to use the external command
pipe to allow users to submit commands remotely, you need to make sure that the
authorization is in place as well so that it is not possible for unauthorized users to
send potentially dangerous commands to Nagios.

T he syntax for formatting commands is easy. Each command must be placed on a
single line and end with a newline character. The syntax is as follows:

[TIMESTAMP] COMMAND_NAME;argument1;argument2;...;argumentN

TIMESTAMP is written as UNIX time—that is the number of seconds since
1970-01-01 00:00:00. This can be created by using the date +%s system command.
Most programming languages also offer the means to get the current UNIX time.
Commands are written in upper case. This can be one of the commands that Nagios
should execute, and the arguments depend on the actual command.

Notifi cations and Events

[150]

F or example, to add a comment to a host stating that it has passed a security audit,
one can use the following shell command:

echo "['date +%s'] ADD_HOST_COMMENT;somehost;1;Security Audit;
 This host has passed security audit on 'date +%Y-%m-%d'"
 >/var/nagios/rw/nagios.cmd

This will send an ADD_HOST_COMMENT command (visit http://www.nagios.
org/developerinfo/externalcommands/commandinfo.php? command_id=1) to
Nagios over the external command pipe. Nagios will then add a comment to the
host, somehost, stating that the comment originated from Security Audit. The fi rst
argument specifi es the host name to add the comment to; the second tells Nagios if
this comment should be persistent. The next argument describes the author of the
comment, and the last argument specifi es the actual comment text.

S imilarly, adding a comment to a service requires the use of the ADD_SVC_COMMENT
command (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=1) . The command's syntax is very similar to the
ADD_HOST_COMMENT command except that the command requires the specifi cation of
the host name and service name.

For example, to add a comment to a service stating that it has been restarted, you
should use the following:

echo "['date +%s'] ADD_SVC_COMMENT;router;OpenVPN;1;nagiosadmin;
Restarting the OpenVPN service" >/var/nagios/rw/nagios.cmd

The fi rst argument specifi es the host name to add the comment to; the second is the
description of the service to which Nagios should add the comment. The
next argument tells Nagios if this comment should be persistent. The fourth
argument describes the author of the comment, and the last argument specifi es
actual comment text.

Y ou can also delete a single comment or all comments using the DEL_HOST_
COMMENT (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=3), DEL_ALL_HOST_COMMENTS (visit http://www.
nagios.org/developerinfo/externalcommands/commandinfo.php? command_
id=13), and DEL_SVC_COMMENT (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=4) or DEL_ALL_SVC_COMMENTS
commands (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=14).

Other commands worth mentioning are related to scheduling checks on demand.
Very often, it is necessary to request that a check be carried out as soon as possible;
for example, when testing a solution.

Chapter 6

[151]

This time, let's create a script that schedules a check of a host, all services on that
host, and a service on a different host, as follows:

#!/bin/sh

NOW='date +%s'

echo "[$NOW] SCHEDULE_HOST_CHECK;somehost;$NOW" \
 >/var/nagios/rw/nagios.cmd
echo "[$NOW] SCHEDULE_HOST_SVC_CHECKS;somehost;$NOW" \
 >/var/nagios/rw/nagios.cmd
echo "[$NOW] SCHEDULE_SVC_CHECK;otherhost;Service Name;$NOW" \
 >/var/nagios/rw/nagios.cmd

exit 0

The commands SCHEDULE_HOST_CHECK (visit http://www.nagios.org/
developerinfo/externalcommands/commandinfo.php? command_id=127)
and SCHEDULE_HOST_SVC_CHECKS (http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=30) accept a host name
and the time at which the check should be scheduled. The SCHEDULE_SVC_CHECK
command (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=29) requires the specifi cation of a service
description as well as the name of the host to schedule the check on.

Normal scheduled checks, such as the ones scheduled above, might not actually
take place at the time that you scheduled them. Nagios also needs to take allowed
time periods into account as well as checking whether checks were disabled for a
particular object or globally for the entire Nagios.

There are cases when you'll need to force Nagios to do a check—in such cases,
you should use SCHEDULE_FORCED_HOST_CHECK (visit http://www.nagios.
org/developerinfo/externalcommands/commandinfo.php? command_
id=128), SCHEDULE_FORCED_HOST_SVC_CHECKS (visit http://www.nagios.org/
developerinfo/externalcommands/commandinfo.php? command_id=130) and
SCHEDULE_FORCED_SVC_CHECK (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=129) commands. They work
in exactly the same way as described above, but make Nagios skip the checking of
time periods, and ensure that the checks are disabled for this particular object. This
way, a check will always be performed, regardless of other Nagios parameters.

O ther commands worth using are related to custom variables, introduced in Nagios
3. This feature is described in more detail in Chapter 5, Advanced Confi guration. When
you defi ne a custom variable for a host, service, or contact, you can change its value
on the fl y with the external command pipe.

Notifi cations and Events

[152]

As these variables can then be directly used by check or notifi cation commands and
event handlers, it is possible to make other applications or event handlers change
these attributes directly without modifi cations to the confi guration fi les.

A good example would be that the IT staff registers its presence via an application
without any GUI. This application periodically sends information about the latest
known IP address, and that information is then passed to Nagios assuming that the
person is in the offi ce. This would later be sent to a notifi cation command to use that
specifi c IP address while sending a message to the user.

Assuming that the user name is jdoe and the custom variable name is DESKTOPIP,
the message that would be sent to the Nagios external command pipe would be
as follows:

[1206096000] CHANGE_CUSTOM_CONTACT_VAR;jdoe;DESKTOPIP;12.34.56.78

This would cause a later use of $_CONTACTDESKTOPIP$ to return a value of
12.34.56.78.

Nagios offers the CHANGE_CUSTOM_CONTACT_VAR (visit http://www.nagios.
org/developerinfo/externalcommands/commandinfo.php? command_id=141),
CHANGE_CUSTOM_HOST_VAR (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=139), and CHANGE_CUSTOM_
SVC_VAR (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=140) commands for modifying custom variables in
contacts, hosts and, services accordingly.

The commands explained above are just a very small subset of the full capabilities of
the Nagios external command pipe. For a complete list of commands, visit http://
www.nagios.org/developerinfo/externalcommands/commandlist.php, where
the External Command List can be seen.

E xternal commands are usually sent from event handlers or from the Nagios web
interface. You will fi nd external commands most useful when writing event handlers
for your system, or when writing an external application that interacts with Nagios.

Event Handlers
E vent handlers are commands that are triggered whenever the state of a host or
service changes. They offer functionality similar to notifi cations. The main difference
is that the event handlers are called for each type of change and even for each soft
state change. This provides the ability to react to a problem before Nagios notifi es it
as a hard state and sends out notifi cations about it. Another difference is what the
event handlers should do. Instead of notifying users that there is a problem, event
handlers are meant to carry out actions automatically.

Chapter 6

[153]

For example, if a service defi ned with max_check_attempts set to 4, the retry_
interval set to 1, and the check_interval is set to 5, then the following example
illustrates when event handlers would be triggered, and with what values, for
$SERVICESTATE$, $SERVICESTATETYPE$, and $SERVICEATTEMP$ macro defi nitions:

Event handlers are triggered for each state change—for example, in minutes, 10, 23,
28, and 29. When writing an event handler, it is necessary to check whether an event
handler should perform an action at that particular time or not. See the following
example for more details.

Event handlers are also triggered for each soft check attempt and for soft to hard
transitions. In this example, these occur at minutes 11, 12, and 13. It's important to
know that the events will not be run if no state changes have occurred, and the object
is in a hard state—for example, no events are triggered in minutes 5, 18, 34, and 39.

A typical example might be that your web server process tends to crash once a
month. Because this is rare enough, it is very diffi cult to debug and resolve it.
Therefore, the best way to proceed is to restart the server automatically until a
solution to the problem is found.

If your confi guration has max_check_attempts set to 4, as in the example above,
then a good place to try to restart the web server is after the third soft failure
check—in the previous example, this would be minute 12.

Notifi cations and Events

[154]

As suming that the restart has been successful, the diagram shown above would look
like this:

Please note that no hard critical state has occurred since the event handler resolved
the problem. If a restart cannot resolve the issue, Nagios will only try it once, as the
attempt is done only in the third soft check.

Event handlers are defi ned as commands, similar to check commands. The main
difference is that the event handlers only use macro defi nitions to pass information
to the actual event handling script. This implies that the $ARGn$ macro defi nitions
cannot be used and arguments cannot be passed in the host or service defi nition by
using the ! separator.

In the previous example, we would defi ne the following command:

 define command
 {
 command_name restart-apache2
 command_line $USER1$/events/restart_apache2
 $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$
 }

The command would need to be added to the service. For both hosts and services,
this requires adding an event_handler directive that specifi es the command to be
run for each event that is fi red. In addition, it is good to set event_handler_enabled
set to 1 to make sure that event handlers are enabled for this object.

Chapter 6

[155]

The following is an example of a service defi nition:

 define service
 {
 host_name localhost
 service_description Webserver
 use apache
 event_handler restart-apache2

 event_handler_enabled 1

 }

Fin ally, a short version of the script is as follows:

 #!/bin/sh

 # use variables for arguments
 SERVICESTATE=$1
 SERVICESTATETYPE=$2
 SERVICEATTEMPT=$3

 # we don't want to restart if current status is OK
 if ["$SERVICESTATE" != "OK"] ; then

 # proceed only if we're in soft transition state
 if ["$SERVICESTATETYPE" == "SOFT"] ; then

 # proceed only if this is 3rd attempt, restart
 if ["$SERVICESTATEATTEMPT" == "3"] ; then

 # restarts Apache as system administrator
 sudo /etc/init.d/apache2 restart
 fi

 fi

 fi

 exit 0

As we're using sudo here, obviously the script needs an entry in the sudoers fi le to
allow the nagios user to run the command without a password prompt. An example
entry for the sudoers fi le would be as follows:

nagios ALL=NOPASSWD: /etc/init.d/apache2

This will tell sudo that the command /etc/init.d/apache2 can be run by the
user nagios and that asking for passwords before running the command will not
be done.

Notifi cations and Events

[156]

According to our script, the restart is only done after the third check fails. Assuming
that the restart went correctly, the next Nagios check will notify that Apache is
running again. As this is considered a soft state, Nagios has not yet sent out any
notifi cations about the problem.

If the service would not restart correctly, the next check will cause Nagios to set this
failure as a hard state. At this point, notifi cations will be sent out to the object owners.

 You can also try performing a restart in the second check. If that did not help, then
during the third attempt, the script can forcefully terminate all Apache2 processes
using the killall or pkill command. After this has been done, it can try to start the
service again. For example:

 # proceed only ifthis is 3rd attempt, restart
 if ["$SERVICESTATEATTEMPT" == "2"] ; then

 # restart Apache as system administrator
 sudo /etc/init.d/apache2 restart
 fi

 # proceed only ifthis is 3rd attempt, restart
 if ["$SERVICESTATEATTEMPT" == "3"] ; then
 # try to terminate apache2 process as system administrator
 sudo pkill apache2

 # starts Apache as system administrator
 sudo /etc/init.d/apache2 start
 fi

Another common scenario is to restart one service if another one has just
recovered—for example, you might want to restart email servers that use a database
for authentication if the database has just recovered from a failure state. The reason
for doing this is that some applications may not handle disconnected database
handles correctly—this can lead to the service working correctly from the Nagios
perspective, but not allowing some of the users in due to internal problems.

If you have set this up for hosts or services, it is recommended that you keep
fl apping enabled for these services. It often happens that due to incorrectly planned
scripts and the relations between them, some services might end up being stopped
and started again.

In such cases, Nagios will detect these problems and stop running event handlers for
these services, which will cause fewer malfunctions to occur. It is also recommended
that you keep notifi cations set up so that people also get information on when
fl apping starts and stops.

Chapter 6

[157]

Modifying Notifications
 An interesting new feature in Nagios 3 is the ability to change various parameters
related to notifi cations. These parameters are modifi ed via an external command
pipe, similar to a few of the commands shown in the previous section.

A good example would be when Nagios contact persons have their workstations
connected to the local network only when they are actually at work (which is usually
the case if they are using notebooks), and turn their computers off when they leave
work. In such a case, a ping check for a person's computer could trigger an event
handler to toggle that person's attributes.

Let's assume that our user jdoe has two actual contacts—jdoe-email and jdoe-
jabber, each for different types of notifi cations. We can set up a host corresponding
to the jdoe workstation. We will also set it up to be monitored every fi ve minutes
and create an event handler. The handler will change the jdoe-jabber's host and
service notifi cation time period to none on a hard host down state. On a host up state
change, the time period for jdoe-jabber will be set to 24x7. This way, the user will
only get Jabber notifi cations if he or she is at work.

Nagios offers commands to change the time periods during which a user wants to
receive notifi cations. The commands for this purpose are: CHANGE_CONTACT_HOST_
NOTIFICATION_TIMEPERIOD (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=153) and CHANGE_CONTACT_
SVC_NOTIFICATION_TIMEPERIOD (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=152). Both commands take
the contact and the time period name as their arguments.

An event handler script that modifi es the user's contact time period based on state is
as follows:

#!/bin/sh

NOW='date +%s'
CONTACTNAME=$1-jabber
if ["$2,$3" = "DOWN,HARD"] ; then
 TP=none
else
 TP=24x7
fi
echo "[$NOW] CHANGE_CONTACT_HOST_NOTIFICATION_TIMEPERIOD;
 $CONTACT;$TP" \
 >/var/nagios/rw/nagios.cmd
echo "[$NOW] CHANGE_CONTACT_SVC_NOTIFICATION_TIMEPERIOD;
 $CONTACT;$TP" \
 >/var/nagios/rw/nagios.cmd
exit 0

Notifi cations and Events

[158]

The command should pass $CONTACTNAME$, $SERVICESTATE$, and
$SERVICESTATETYPE$ as parameters to the script.

In case you need a notifi cation about a problem sent again, you should use
the SEND_CUSTOM_HOST_NOTIFICATION (visit http://www.nagios.org/
developerinfo/externalcommands/commandinfo.php? command_id=134) or
SEND_CUSTOM_SVC_NOTIFICATION (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=135) command. These
commands take host or host and service names, additional options, author name,
and comments that should be put in the notifi cation. Options allow specifying if
the notifi cation should also include all escalation levels (a value of 1), if Nagios
should skip time periods for specifi c users (a value of 2) as well as if Nagios should
increment notifi cations counters (a value of 4). Options are stored bitwise so a value
of 7 (1+2+4) would enable all of these options. The notifi cation would be sent to all
people including escalations; it will be forced, and the escalation counters will be
increased. Option value 3 means it should be broadcast to all escalations as well, and
the time periods should be skipped.

To send a custom notifi cation about the main router to all users including
escalations, you should send the following command to Nagios:

[1206096000] SEND_CUSTOM_HOST_NOTIFICATION;router1;3;jdoe;RESPOND ASAP

Adaptive Monitoring
 Nagios 3 introduces a very powerful feature called adaptive monitoring that allows
the modifi cation of various check-related parameters on the fl y. This is done by
sending a command to the Nagios external command pipe.

The fi rst thing that can be changed on the fl y is the command to be executed by
Nagios, along with the attributes that will be passed to it—an equivalent of the
check_command directive in the object defi nition. In order to do that, you can use the
CHANGE_HOST_CHECK_COMMAND (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=107) or CHANGE_SVC_CHECK_
COMMAND (visit http://www.nagios.org/developerinfo/externalcommands/
commandinfo.php? command_id=108) command. These require the host name, or
the host name and service description, and the check command as arguments.

This can be used to actually change how hosts or services are checked, or to only
modify parameters that are passed to the check commands—for example, a check for
ping latency can be modifi ed based on whether a primary or a backup connection
is used. An example to change a check command of a service, which changes the
command and its specifi ed parameters, is as follows:

Chapter 6

[159]

[1206096000] CHANGE_SVC_CHECK_COMMAND;linux1;PING;check_ping!500.0,50%

 A similar possibility is to change the custom variables that are used later in a check
command. An example where the following command and service are used is:

 define command
 {
 command_name check-ping
 command_line $USER1$/check_ping –H $HOSTADDRESS$
 -p $_SERVICEPACKETS$ -w $_SERVICEWARNING$
 –c $_SERVICECRITICAL$

 }

 define service
 {
 host_name linux2
 service_description PING
 use ping
 _PACKETS 5
 _WARNING 100.0,40%
 _CRITICAL 300.0,60%
 }

This example is very similar to the one we saw earlier. The main benefi t is that
parameters can be set independently—for example, one event handler might modify
the number of packets to send while another one can modify the warning and/or
critical state limits.

The following is an example to modify the warning level for the ping service on a
linux1 host:

[1206096000] CHANGE_CUSTOM_SVC_VAR;linux1;PING;_WARNING;500.0,50%

As us the case for check commands, it is also possible to modify event handlers
on the fl y. This can be used to enable or disable scripts that try to resolve a
problem. To do this, you need to use the CHANGE_HOST_EVENT_HANDLER (visit
http://www.nagios.org/developerinfo/externalcommands/commandinfo.php?

command_id=105) and CHANGE_SVC_EVENT_HANDLER (visit http://www.nagios.
org/developerinfo/externalcommands/commandinfo.php? command_id=106)
commands.

In order to set an event handler command for the Apache2 service mentioned
previously, you need to send the following command:

[1206096000] CHANGE_SVC_EVENT_HANDLER;localhost;webserver;
restart-apache2

Notifi cations and Events

[160]

Please note that setting an empty event handler disables any previous event handlers
for this host or service. The same comment also applies for modifying the check
command defi nition. In case you are modifying commands or event handlers, please
make sure that the corresponding command defi nitions actually exist; otherwise,
Nagios might reject your modifi cations.

Another feature that you can use to fi ne-tune the execution of checks is the ability
to modify the time period during which a check should be performed. This is
done with the CHANGE_HOST_CHECK_TIMEPERIOD (visit http://www.nagios.org/
developerinfo/externalcommands/commandinfo.php? command_id=138) and
CHANGE_SVC_CHECK_TIMEPERIOD (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=137) commands. Similar to
the previous commands, these accept the host, or host and service names, and the
new time period to be set. See the following example:

[1206096000] CHANGE_SVC_CHECK_TIMEPERIOD;localhost;webserver;
workinghours

 As is the case with command names, you need to make sure that the time period you
are requesting to be set exists in the Nagios confi guration. Otherwise, Nagios will
ignore this command and leave the current check time period.

Nagios also allows modifying intervals between checks—both for the normal
checks, and retrying during soft states. This is done through the CHANGE_NORMAL_
HOST_CHECK_INTERVAL (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=109), CHANGE_RETRY_
HOST_CHECK_INTERVAL (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=136), CHANGE_NORMAL_
SVC_CHECK_INTERVAL (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=110), and CHANGE_
RETRY_SVC_CHECK_INTERVAL (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=111) commands. All of these
commands require passing the host, or the host and service names, as well as the
intervals that should be set.

A typical example of when intervals would be modifi ed on the fl y is when the
priority of a host or service relies on other parameters in your network. An example
might be a backup server.

Making sure that the host and all of services on it are working properly is very
important before actually performing scheduled backups. During idle time, its
priority might be much lower. Another issue might be that monitoring the backup
server should be performed more often in case the primary server fails.

Chapter 6

[161]

An example to modify the normal interval for a host to every 15 minutes is as follows:

[1206096000] CHANGE_NORMAL_HOST_CHECK_INTERVAL;backupserver;15

There is also the possibility to modify how many checks need to be performed
before a state is considered to be hard. The commands for this are CHANGE_
MAX_HOST_CHECK_ATTEMPTS (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=112) and CHANGE_
MAX_SVC_CHECK_ATTEMPTS (visit http://www.nagios.org/developerinfo/
externalcommands/commandinfo.php? command_id=113).

The following is an example command to modify max retries for a host to 5:

[1206096000] CHANGE_MAX_HOST_CHECK_ATTEMPTS;linux1;5

There are many more commands that allow the fi ne tuning of monitoring and
checks on the fl y. It is recommended that you get acquainted with all of the external
commands that your version of Nagios supports, as mentioned in the section
introducing the external commands pipe.

Summary
Nagios offers several ways to let people know that something is wrong. Notifi cations
can range from simple emails to a complex system that deals with multiple ways
to communicate problems, as well as the ability to choose the appropriate way
dynamically. This will help eliminate people from having to deal with their emails,
and will help in resolving issues much more effectively.

Nagios can deliver information about problems in almost any way you can possibly
imagine. Notifi cations can be sent as emails, instant messages, and Windows
messaging texts. You can also have a text message over GSM networks; whatever
works best for you and your colleagues. You can even set up VoIP combined with
speech synthesis to let people know what the problems are.

Nagios also has a very powerful mechanism for escalating problems. When set up
correctly, this is a very useful tool which will aid in complex problem resolution. In
the case of larger problems, it can also be used to communicate problems properly so
that a continuity plan can be put in place to prevent long outages to critical services.

Escalations also have all of the benefi ts of normal notifi cations—they can also be sent
out in any way you might think of, and people will have the same power to set it up
conveniently for themselves.

Notifi cations and Events

[162]

Another feature of Nagios that allows great fl exibility is the external commands
pipe. This offers a simple way to send commands directly to Nagios. It can be used
from any programming language. Commands can be sent in various situations.
Commands can range from adding a comment to an object, to a complete restart
of Nagios. External commands also allow enabling and disabling checks, fl apping
detection, and many other Nagios functionality.

Sending commands to Nagios also provides Nagios' event handlers with the
possibility to send commands that affect how Nagios performs and how it notifi es
users about problems or problem recoveries. It also allows fi ne tuning of the
monitoring of your network infrastructure.

Nagios 3 provides huge advancements in this area, which makes it much easier to
create a complex IT monitoring system. This is of great benefi t to medium and large
networks, where the ability to dynamically adapt to a situation is a must.

Passive Checks and NSCA
Nagios is a very powerful platform because it is easy to extend. The previous
chapters talked about check command plugins and how they can be used to check
any host or service that your company might be using. Another great feature that
Nagios offers is the ability for third-party software or other Nagios instances to
report information on the status of services or hosts. This way, Nagios does not need
to schedule and run checks by itself, but other applications can report information as
it is available to them.

This means that your applications can send problem reports directly to Nagios,
instead of just logging them. In this way, your applications can benefi t from
powerful notifi cation systems as well as dependency tracking. This mechanism can
also be used to receive failure notifi cations from other services or machines—for
example, SNMP (Simple Network Management Protocol) traps. This is described in
more detail in Chapter 9.

Nagios also offers a tool for sending passive check results for hosts and services over
a network. It is called NSCA (Nagios Service Check Acceptor). It can be used to
send results from one Nagios instance to another. It can also be used by third-party
applications running on different machines to send passive check results to a central
Nagios server.

This mechanism includes password protection, along with encryption, to prevent
injection of false results in to Nagios. In this way, NSCA communication sent over
Internet is more secure.

What are Passive Checks?
 Previous parts of this book often mentioned Nagios performing checks on various
software and machines. In such cases, Nagios decides when a check is to be
performed, runs the check and stores the result. These types of checks are called
Active Checks.

Passive Checks and NSCA

[164]

Nagios also offers another way to work with the statuses of hosts and services. It
is possible to confi gure Nagios so that it will receive status information sent over a
command pipe. In such a case, checks are done by other programs, and their results
are sent to Nagios. Nagios will still handle all notifi cations, event handlers, and
dependencies between hosts and services.

 Active checks are most common in the Nagios world. They have a lot of advantages
and some disadvantages. One of the problems is that such checks can take only a
couple of seconds to complete—a typical timeout for an active check to complete is
10 or 30 seconds. In many cases, the time taken is not enough, as some checks need
to be performed over a longer period of time to have satisfactory results. A good
example might be running a check that takes several hours to complete—in this case,
it does not make sense to raise the global service_check_timeout option, but rather
to schedule these checks outside of Nagios and only report the results back to it.

There are also different types of checks including external applications or devices that
want to report information directly to Nagios. This can be done to gather all critical
errors to a single, central place. These types of checks are called Passive Checks.

For example, when a web application cannot connect to the database, it will let
Nagios know about it immediately. It can also send reports after a database recovery,
or periodically, even if connectivity to the database has been consistently available,
so that Nagios has an up-to-date status. This can be done in addition to active checks,
to identify critical problems earlier.

Another example is where an application already processes information such as
network bandwidth utilization. In such a case, adding a module that reports current
utilization along with the OK/WARNING/CRITICAL state to Nagios seems much easier
than using active checks for the same job.

Often, there are situations where active checks obviously fi t better. In other cases,
passive checks are the way to go. In general, if a check can be done quickly and does
not require long running processes, it should defi nitely be done as an active service.
If the situation involves reporting problems from other applications or machines,
it is defi nitely a use case for a passive check. In cases where the checks require the
deployment of long-running processes or monitoring information constantly, this
should be done as a passive service.

 Another difference is that active checks require much less effort to be set up when
compared to passive checks. In the fi rst case, Nagios takes care of the scheduling,
and the command only needs to perform the actual checks and mark the results
as OK/WARNING/CRITICAL based on how a check command is confi gured. Passive
checks require all the logic related to what should be reported and when it should be
checked to be put in an external application. This usually calls for some effort.

Chapter 7

[165]

The following diagram shows how both active and passive checks are performed by
Nagios. It shows what is performed by Nagios in both cases and what needs to be
done by the check command or an external application for passive checks.

Active check flow Passive check flow

Nagios process External application

Schedule test to
perform / data to send

Gather information /
perform tests

Send results over
external command pipe

Parse passive check
results

Store check results

Nagios process Check command

Scheduled / on
demand checks

Parse command output

Store check results

Perform check

Run external command

Nagios also offers a way of combining the benefi ts of both active and passive checks.
Often, you have situations where other applications can report if a certain service is
working properly or not. But if the monitoring application is not running or some
other issue prevents it from reporting, Nagios can use active checks to keep the
service status up–to-date.

A good example would be a server that is a part of an application, processing job
queues using a database. It can report each problem when accessing the database.
We want Nagios to monitor this database, and as the application is already using it,
we can add a module that reports this to Nagios.

The application can also periodically let Nagios know if it succeeded in using
the database without problems. However, if there are no jobs to process and the
application is not using it, Nagios will not have up-to-date information about
the database.

Passive Checks and NSCA

[166]

Configuring Passive Checks
T he fi rst thing that needs to be done in order to use passive checks for your Nagios
setup is to make sure that you have the following options in your main Nagios
confi guration fi le:

accept_passive_service_checks=1
accept_passive_host_checks=1

It would also be good to enable the logging of incoming passive checks—this
makes determining the problem of not processing a passive check much easier. The
following directive allows it:

log_passive_checks=1

Setting up hosts or services for passive checking requires an object to be defi ned and
set up so as not to perform active checks. The object needs to have the passive_
checks_enabled option set to 1 for Nagios to accept passive check results over the
command pipe.

The following is an example of the required confi guration for a host that accepts
passive checks and has active checks disabled:

 define host
 {
 use generic-host
 host_name linuxbox01
 address 10.0.2.1
 active_checks_enabled 0

 passive_checks_enabled 1

 }

Confi guring services is exactly the same as with hosts. For example, to set up a very
similar service, all we need to do is to use the same parameters as those for the hosts:

 define service
 {
 use ping-template
 host_name linuxbox01
 service_description PING
 active_checks_enabled 0

 passive_checks_enabled 1

 }

In this case, Nagios will never perform any active checks on its own and will only
rely on the results that are passed to it.

Chapter 7

[167]

We can also confi gure Nagios so that if no new information has been provided
within a certain period of time, it will use active checks to get the current status of
the host or service. If up-to-date information has been provided by a passive check
during this period, then it will not perform active checks.

In order to do this, we need to enable active checks by setting the active_checks_
enabled option to 1 without specifying the normal_check_interval directive. For
Nagios to perform active checks when there is no up-to-date result from passive
checks, you need to set the check_freshness directive to 1 and set freshness_
threshold to the time period after which a check should be performed. The time
performed is specifi ed in seconds.

The fi rst parameter tells Nagios that it should check whether the results from the
checks are up-to-date. The next parameter specifi es the number of seconds after
which Nagios should consider the results to be out of date. Attributes can be used for
both hosts and services.

A sample defi nition for a host that runs an active check if there has been no result
provided within the last two hours:

 define host
 {
 use generic-host
 host_name linuxbox02
 address 10.0.2.2
 check_command check-host-alive
 check_freshness 1
 freshness_threshold 7200
 active_checks_enabled 1
 passive_checks_enabled 1
 }

T he following is an illustration showing when Nagios would invoke active checks:

7 h 8 h 9 h 10 h 11 h 12 h 17 h13 h 14 h 15 h 16 h

Legend

18 h

time [h]

Passive checks

Active checks

Freshness threshold indicator

Passive check result

Active check result

4 h 5 h 6 h3 h0 h 1 h 2 h

Passive Checks and NSCA

[168]

Each time there is at least one passive check result that is still valid (i.e., was received
within the past two hours), Nagios will not perform any active checks. However,
two hours after the last passive or active check result was received, Nagios would
perform an active check to keep the results up-to-date.

P assive Checks—Hosts
Na gios allows applications and event handlers to send out passive check results for
host objects. In order to use them, the host needs to be confi gured to accept passive
checks results.

In order to be able to submit passive check results, we need to confi gure Nagios to
allow the sending of passive check results, and set the host objects to accept them.

Submitting passive host check results to Nagios requires sending a command to the
Nagios external command pipe. This way, the other applications on your Nagios
server can report the status of the hosts.

The command to submit passive checks is PROCESS_HOST_CHECK_RESULT (visit
http://www.nagios.org/developerinfo/externalcommands/commandinfo.php?
command_id=115). This command accepts the host name, status code, and the textual
output from a check. The host status code should be 0 for an UP state, 1 for DOWN and
2 for an UNREACHABLE state.

The following is a sample script that will accept the host name, status code, and
output from a check and will submit these to Nagios:

 #!/bin/sh

 NOW='date +%s'
 HOST=$1
 STATUS=$2
 OUTPUT=$3

 echo "[$NOW] PROCESS_HOST_CHECK_RESULT;$HOST;$STATUS;$OUTPUT" \
 >/var/nagios/rw/nagios.cmd

 exit 0

As an example of the use of this script, the command that is sent to Nagios for
host01, status code 2 (UNREACHABLE) and output router 192.168.1.2 down would
be as follows:

[1206096000] PROCESS_HOST_CHECK_RESULT;host01;2;router
192.168.1.2 down

Chapter 7

[169]

When submitting results, it is worth noting that Nagios might take some time to
process them, depending on the intervals between Nagios's checks of the external
command pipe.

Unlike active checks, Nagios will not take network topology into consideration by
default. This is very important in situations where a host behind a router is reported
to be down because the router is actually down.

By default, Nagios handles results from active and passive checks differently. When
Nagios plans and receives results from active checks, it takes the actual network
topology into consideration and performs a translation of the states based on this.
This means that if Nagios receives a result indicating that a host is DOWN, it assumes
that all child hosts are in an UNREACHABLE state.

Wh en a passive result check comes in to Nagios, Nagios expects that the result
already has a network topology included. When a host is reported to be DOWN
as a passive check result, Nagios does not perform a translation from DOWN to
UNREACHABLE. Even if its parent host is currently DOWN, the child host state is also
stored as DOWN.

The following illustration shows how results from active and passive checks are
treated differently by Nagios:

Active check Passive check

Active check result: DOWN
Translates to: UNREACHABLE

Active check result: DOWN
Stored as: DOWN

nagios1

Switch1

ftpserver webserver

Router down Router down nagios1

Switch1

ftpserver webserver

Passive Checks and NSCA

[170]

In both the cases, a check result stating that the host is down is received by Nagios.
When it comes in as a passive check, no state translation is done and Nagios stores
the host and all child nodes being down. When it is an active check result, Nagios
takes the fact that switch1 is down into account and maps the child node's result
into an UNREACHABLE state.

How Nagios process handles passive check results can be defi ned in the main Nagios
confi guration fi le. In order to make Nagios treat passive host check results in the
same way as active check results, we need to enable the following option:

translate_passive_host_checks=1

By default, Nagios treats host results from passive checks as hard results. This is
because, very often, passive checks are used to report host and service statuses from
other Nagios instances. In such cases, only reports regarding hard state changes are
propagated across Nagios servers.

If you want Nagios to treat all passive check results for hosts as if they were soft
results, you need to enable the following option in the main Nagios confi guration fi le:

passive_host_checks_are_soft=1

Passive Checks—Services
Pas sive service checks are very similar to passive host checks. In both the cases,
the idea is that Nagios receives information about host statuses over the external
commands pipe.

As with passive checks of hosts, all that is needed is to enable the global Nagios
option to accept passive check results, and also enable this option for each service
that should allow the passing of passive check results.

The results are passed to Nagios in the same way as they are passed for hosts. A
command to submit passive checks is PROCESS_SERVICE_CHECK_RESULT (visit
http://www.nagios.org/developerinfo/externalcommands/commandinfo.php?
command_id=114). This command accepts the host name, service description, status
code, and the textual output from a check. Service status codes are the same as those
for active checks—0 for OK, 1 for WARNING, 2 for CRITICAL, and 3 for an UNKNOWN state.

Chapter 7

[171]

The following is a sample script that will accept the host name, status code, and
output from a check and will submit these to Nagios:

 #!/bin/sh

 CLOCK='date +%s'
 HOST=$1
 SVC=$2
 STATUS=$3
 OUTPUT=$4

 echo "[$CLOCK] PROCESS_SERVICE_CHECK_RESULT;$HOST;$SVC;$STATUS;
 $OUTPUT"\
 >/var/nagios/rw/nagios.cmd

 exit 0

As an example of the use of this script, the command that is sent to Nagios for
host01, service PING, status code 0 (OK) and output RTT=57 ms is as follows:

[1206096000] PROCESS_SERVICE_CHECK_RESULT;host01;PING;0;RTT=57 ms

A very common scenario for using passive checks is a check that takes a very long
time to complete.

As with to submitting host check results, it is worth mentioning that Nagios will take
some time to process passive check results as they are polled periodically from the
external commands pipe.

A major difference between hosts and services is that service checks differentiate
between soft and hard states. When new information regarding a service gets passed
to Nagios via the external commands pipe, Nagios treats it the same way as if it had
been received by an active check.

If a service is set up with a max_check_attempts directive of 5, then the same
number of passive check results would need to be passed in order for Nagios to treat
the new status as a hard state change.

Pas sive service checks are often used to report the results of long lasting tests
asynchronously. A good example of such a test is checking whether there are bad
blocks on a disk. This requires trying to read the entire disk directly from the block
device (such as /dev/sda1) and checking if the attempt has failed. This can't be done
as an active check as reading the device takes a lot of time to complete—larger disks
might require several hours to complete.

For this reason, the only way to perform such a check is to schedule them from the
system—for example, using the cron daemon (visit http://man.linuxquestions.
org/index.php?query=cron). The script should then post results to the
Nagios daemon.

Passive Checks and NSCA

[172]

The following is a script that runs the dd system command (visit http://man.
linuxquestions.org/index.php?query=dd) to read an entire block device. Based
on whether the read was successful or not, the appropriate status code, along with
plugin output, is sent out.

#!/bin/sh

 SVC=$1
 DEVICE=$2
 TMPFILE=/tmp/ddlog.$$
 NOW='date +%s'
 PREFIX="['date +%s'] [$NOW] PROCESS_SERVICE_CHECK_
RESULT;localhost;$SVC"

 # try to read the device
 dd if=$DEVICE of=/dev/null >$TMPFILE 2>&1
 CODE=$?
 RESULT='grep copied <$TMPFILE'
 rm $TMPFILE

 if [$CODE == 0] ; then
 echo "$PREFIX;0;$RESULT"
 else
 echo "$PREFIX;2;Error while checking device $DEVICE"
 fi

 exit 0

If the check fails, then a critical status, along with text stating that there was
a problem checking the specifi c device, is sent out to Nagios. If the check was
successful, an output mentioning number of bytes and the speed of transfer is sent
out to Nagios. A typical output would be something like this:

254951424 bytes (255 MB) copied, 9.72677 seconds, 26.2 MB/s

The hos t name is hardcoded to localhost. Using this script requires confi guring a
service to have active checks disabled and passive checks enabled. As the checks will
be done quite rarely, it's recommended to set max_check_attempts to 1.

Troubleshooting Passive Checks
It' s not always possible to set up passive checks correctly the fi rst time. In such cases,
it is a good thing to try to debug the issue one step at a time in order to fi nd any
potential problems. Sometimes the problem could be a confi guration issue, while in
other cases, it could be an issue such as the mistyping of the host or service name.

One thing worth checking is whether the Web UI shows changes after you have
sent the passive result check. If it doesn't, then at some point, things are not
working correctly.

Chapter 7

[173]

The fi rst thing you should start with is enabling the logging of external commands
and passive checks. To do this, make sure that the following values are enabled in
the main Nagios confi guration fi le:

log_external_commands=1
log_passive_checks=1

In order for the changes to take effect, a restart of the Nagios process is needed. After
this has been done, Nagios will log all commands passed via the command pipe and
log all of the passive check results it receives.

The fi rst issue, a common problem, is that an application or script cannot write data
to the Nagios command pipe. In order to test this, simply change to the user your
scripts are running as, and try the following command:

user@ubuntuserver:~$ echo "TEST" >/var/nagios/rw/nagios.cmd

If the command above runs fi ne, and no errors are reported, then your permissions
are set up correctly. If an error shows up, you should add the user to the nagioscmd
group as described in Chapter 2, Installation and Confi guration.

The next thing to do is to manually send a passive check result to the Nagios
command pipe and check whether the Nagios log fi le was received and parsed
correctly. To test this, run the following command:

echo "['date +%s'] PROCESS_HOST_CHECK_RESULT;host1;2;test" \

 >/var/nagios/rw/nagios.cmd

The name, host1, needs to be replaced with an actual host name from your
confi guration. A few seconds after running this command, the Nagios log fi le should
refl ect the command that we have just sent. You should see the following lines in
your log:

EXTERNAL COMMAND: PROCESS_HOST_CHECK_RESULT;host1;2;test
[1220257561] PASSIVE HOST CHECK: host1;2;test

If both of these lines are in your log fi le, then we can conclude that Nagios has
received and parsed the command correctly.

 If only the fi rst line is present, then it means that either the global option to receive
passive host check results is disabled, or it is disabled for this particular object. The
fi rst thing you should do is to make sure that your main Nagios confi guration fi le
contains the following line:

accept_passive_host_checks=1

Passive Checks and NSCA

[174]

Next, you should check your confi guration to see whether the host defi nition has
passive checks enabled as well. If not, simply add the following directive to the
object defi nition:

passive_checks_enabled 1

If you have misspelled the name of the host object, then the following will be logged:

Warning: Passive check result was received for host ‘host01',
but the host could not be found!

In this case, make sure that your host name is correct.

Similar checks can also be done for services. You can run the following command to
check if a passive service check is being handled correctly by Nagios:

echo "['date +%s'] PROCESS_SERVICE_CHECK_RESULT;host1;APT;0;test" \
 >/var/nagios/rw/nagios.cmd

Again, host1 should be replaced by the actual host name, and APT needs to be an
existing service for that host. After a few seconds, the following entries in Nagios log
fi le would indicate the result has been successfully parsed:

EXTERNAL COMMAND: PROCESS_SERVICE_CHECK_RESULT;host1;APT;0;test
PASSIVE SERVICE CHECK: host1;APT;0;test

If the second line is not in the log fi le, either the option to accept service passive
checks is disabled on a global basis, or this particular service has the option to accept
passive check results disabled. You should start by making sure that your main
Nagios confi guration fi le contains the following line:

accept_passive_service_checks=1

You should also make sure that the service defi nition has passive checks enabled as
well, and if not, add the following directive to the object defi nition:

passive_checks_enabled 1

 If you have misspelled the name of the host or service, then the following will
be logged:

Warning: Passive check result was received for service ‘APT' on host
‘host1', but the service could not be found!

Chapter 7

[175]

What is NSCA?
 Passive checks are sent to Nagios via the external command pipe. As it is a named
pipe on a specifi c machine, the main problem is that all passive check results need to
be sent from this machine.

For many Nagios installations, this causes a problem. Very often, a check needs to
be done on one or more remote hosts. This requires some mechanism to pass results
from the machines that perform the tests to the computers running the Nagios
daemon, which will process the results.

This is why Nagios Service Check Acceptor (NSCA) was developed. It is a client-
server application that allows the passing of service and host check results over the
network. This protocol allows the use of encryption, so the results are sent securely.

 NSCA is an application that allows the sending of results directly to the Nagios
external command pipe. NSCA consists of two parts—the server and the client. The
part responsible for receiving check results and passing them to Nagios is the server.
This listens on a specifi c TCP port for NSCA clients passing information. It accepts
and authenticates incoming connections and passes these results to the Nagios
external command pipe. All information is encrypted using the MCrypt library (visit
http://mcrypt.sourceforge.net/).

 The client part accepts one or more host or service check results on a standard input
and sends them to the NSCA server using the specifi ed IP address and port. Each
line received on the standard input is a single check result that should be sent to the
NSCA server. An NSCA client can be used to transmit more than one result over a
period of time. Therefore, it is not necessary to launch a new NSCA client instance
for each new result.

 Authentication is done using the MCrypt libraries for encryption, and NSCA uses
a password to verify if the status message is valid. You should either generate a
random password or choose a password that is not dictionary–based, and use both
upper case and lower case letters, as well as one or more digits. It is necessary to
specify the same encryption method along with exactly the same password for both
the client and the server in order for it to work properly.

Passive Checks and NSCA

[176]

The following illustration shows how passive checks are done on the same host, as
well as when sent over the network using NSCA:

Nagios server Remote machine

NSCA client External application

Schedule test to
perform / data to send

Gather information /
perform tests

Receive check result
on standard input

Negotiate encryption

Nagios process NSCA server

Accept connection

Receive check result
over NSCA protocol

Parse passive check
results

Store check results

This example shows how the results are passed down directly from an external
application to the Nagios daemon. Most complex operations are performed directly
by NSCA. The application only needs to gather results from the check or checks,
spawn send_nsca, and make sure that the results are sent out properly.

 N SCA is also commonly used in conjunction with distributed Nagios monitoring.
This means that more than one computer runs a Nagios server and the results are
distributed between Nagios servers running on different machines. In such cases,
NSCA is often used to pass information from one machine to another (this is
known as distributed monitoring, and is described in more detail in Chapter 10,
Advanced Monitoring).

Obtaining NSCA
N SCA project is part of the main Nagios project and can be downloaded from the
same Nagios download page as the rest of Nagios.

Chapter 7

[177]

In order to build NSCA from sources, we will need to download the source code.
This can be downloaded from the Nagios project page and can be found in the add-
ons section (visit http://www.nagios.org/download/addons/ for more details).
The fi le is named in the form of nsca-2.7.2.tar.gz, where 2.7.2 is the version of
NSCA. It is always recommended that you download the latest stable version.

Many Linux distributions already contain prebuilt NSCA binaries. If you are not
an experienced user and just want to test NSCA out, you might want to try the
prebuilt binaries.

For Ubuntu Linux, the package name is nsca. So all that needs to be done is to run
the command is:

apt-get install nsca

For systems that offer yum for downloading packages, the command is as follows:

yum install nsca

NSCA binaries for various operating systems can also be found on NagiosExchange,
at http://www.nagiosexchange.org/. There is also a binary for Microsoft
Windows operating system. This allows the creation of applications that monitor
desktop computers and report the results directly to Nagios.

Compiling NSCA
P lease note that if you do not plan to compile NSCA from the source and intend to
use a pre-built set of binaries, you should continue to the next section.

NSCA requires a small set of prerequisites to be installed on the system. NSCA
requires a standard set of tools, required for compilation, to be present on the
system. For encryption, the libmcrypt package, along with the development fi les,
needs to be installed as well.

On an Ubuntu Linux system, this requires the installation of the packages by
performing the following command:

apt-get install gcc make binutils cpp pkg-config libmcrypt-dev libc6-dev

For other systems, the commands and package names might differ a bit, but their
names should be very similar.

Please make sure that you install the standard compilation utilities as, very often,
you might be building NSCA for machines that you did not compile Nagios on.
This means that they might not have the basic development libraries and
compiler installed.

Passive Checks and NSCA

[178]

T he next step is to run the confi guration script to set up parameters for the compilation
process. Assuming that we want NSCA to be installed in the same way as the Nagios
setup (detailed in Chapter 2), the following confi gure script should be run:

sh configure \
 --sysconfdir=/etc/nagios \
 --prefix=/opt/nagios \
 --localstatedir=/var/nagios \
 --libexecdir=/opt/nagios/plugins \
 --with-nsca-user=nagios \
 --with-nsca-grp=nagioscmd

In case any of the tools or fi les are missing, the confi guration script will abort
indicating what the missing part is. If this happens, you should install the missing
binaries or libraries—how you should do this depends on the exact operating system
and distribution used. For Ubuntu systems, it should be by using the same command
as the one used for building Nagios:

apt-get install gcc make binutils cpp libpq-dev libmysqlclient15-dev\
 libssl0.9.8 libssl-dev pkg-config apache2 \
 libgd2-xpm libgd2-xpm-dev libgd-tools \
 libpng12-dev libjpeg62-dev \
 perl libperl-dev libperl5.8 libnet-snmp-perl

After a successful run of the confi guration script, you should see a message stating
that you can now build NSCA binaries.

The next step is to run the following make command to build the NSCA client
and server:

make all

If you plan to build only the client or server part, use the make send_nsca or
make nsca commands, respectively.

Binaries are built as src/send_nsca and src/nsca. The fi rst one is the NSCA client,
and the other one is the server.

You can install the binaries by running the following command:

make install

You can also copy the binaries manually—copy the send_nsca client to the machines
that will send the results to Nagios, and send nsca to the machine where Nagios
is running.

Chapter 7

[179]

 Configuring the NSCA Server
Y ou now have working binaries for the NSCA server—either compiled from sources
or installed from packages. We can now proceed with confi guring the NSCA server
to listen for incoming connections.

There are a couple of ways in which it can be set up—either as a standalone process
that handles incoming connections, as part of inetd (visit http://en.wikipedia.
org/wiki/inetd), or as the xinetd setup (visit http://www.xinetd.org/). In
either cases, we will need a confi guration fi le that will tell it which encryption
algorithm to use, and the password that will be used to authenticate NSCA client
connections. NSCA also needs to know the path of the Nagios command line.

The main difference between these two installation types is that the standalone
version requires fewer resources to handle a larger number of incoming connections.
On the other hand, inetd or xinetd based NSCA is much easier to set up. An
inetd based setup is easier to maintain. Several inetd implementations also allow
the confi guration of connections only from specifi c IP addresses, or the acceptance
of connections only from specifi c users for UNIX systems. There is no best way in
which NSCA should be set up.

The confi guration fi le is similar to the main Nagios confi guration fi le—each parameter
is written in the form of <name>=<value>. If you compiled NSCA from the source, a
default confi guration can be found in the sample-config/nsca.cfg fi le.

The fi rst parameter that should be set is password. This should be set to the same
value for the NSCA server and all NSCA clients. It's best to set it to a random string.
Using a dictionary-based password might leave your Nagios setup susceptible to
attacks—malicious users might send fake results that cause event triggers to perform
specifi c actions.

Another option that needs to be set is decryption_method, which specifi es the
algorithm to be used for encryption. This is an integer value—a list of possible
values and what they mean can be found in the sample confi guration fi le. Both
decryption_method and password need to be specifi ed as the same on the server
side and the client side.

A sample confi guration is as follows:

 server_address=192.168.1.1
 server_port=5667
 nsca_user=nagios
 nsca_group=nagioscmd
 command_file=/var/nagios/rw/nagios.cmd
 password=ok1ij2uh3yg
 decryption_method=1

Passive Checks and NSCA

[180]

The option server_address is optional, and specifi es the IP address that NSCA
should listen on. If omitted, NSCA will listen on all available IP addresses for
incoming connections. When it is specifi ed, NSCA will only accept connections on
the specifi ed IP address.

The remainder of this section will assume that the NSCA server confi guration fi le
is located as /etc/nagios/nsca.cfg. At this point, it is good to create an NSCA
confi guration based on the example above or the sample NSCA confi guration fi le.

The fastest way to start NSCA is to start it manually in standalone mode. In this
mode, NSCA handles listening on the specifi ed TCP port and changing the user/
group by itself.

To do this, simply run the NSCA binary with the following parameters:

/opt/nagios/bin/nsca -c /etc/nagios/nsca.cfg --daemon

If you plan to have NSCA start up along with Nagios, it is a good idea to add a line
to your /etc/init.d/nagios script that runs Nagios at system boot. Running NSCA
should go in the start section, and stopping NSCA (via killall (see http://
en.wikipedia.org/wiki/killall) command or using Pid File) should be put in
the stop section of the init script. The NSCA source distribution also comes with a
script that can be placed as /etc/init.d/nagios to start and stop the NSCA server.

A nother possibility is to confi gure NSCA to run from the inetd or xinetd super-
server daemons. This requires adding the defi nition of the NSCA server to the
proper confi guration fi les, and those daemons will handle accepting connections and
spawning actual NSCA processes when needed.

In order to add the NSCA defi nition to inetd or xinetd, we fi rst need to add a
service defi nition of the TCP port used. In order to do that, we need to add the
following line to the /etc/services fi le:

nsca 5667/tcp

This will indicate that TCP port 5677 maps to the service name nsca. This
information is used later by the super-server daemons to map port numbers to
names in the confi guration.

For inetd, we also need to add the service confi guration to the /etc/inetd.conf
fi le—a sample defi nition is as follows:

nsca stream tcp nowait nagios /opt/nagios/bin/nsca -c /etc/nagios/
nsca.cfg --inetd

Chapter 7

[181]

The following entry should be written to the inetd.conf fi le as a single line. Next,
we should restart inetd by running:

/etc/init.d/inetd reload

This will cause it to reload the service defi nitions. NSCA should be run whenever a
connection on port 5667 comes in.

Setting up NSCA using xinetd is very similar. All that's needed is to create a fi le,
/etc/xinetd.d/nsca, with the following contents:

service nsca
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = nagios
 group = nagioscmd
 server = /opt/nagios/bin/nsca
 server_args = -c /etc/nagios/nsca.cfg --inetd
 log_on_failure += USERID
 disable = no
}

Next, we need to reload xinetd by running:

/etc/init.d/xinetd reload

A nd after that the NSCA should also be run when a connection on port 5677 comes
in. You might add the only_from statement in the xinetd service defi nition to limit
IP addresses from which a connection can come in. It works differently from server_
address in the NSCA confi guration. The only_from option specifi es the addresses of
the remote machines that will be allowed to connect. On the other hand, the server_
address option is used to specify the IP addresses that NSCA will listen on.

When running under inetd or xinetd, the NSCA server ignores the server_
address, server_port, nsca_user, and nsca_group parameters from the
confi guration fi les. These attributes are confi gured at the inetd/xinetd level. These
attributes are only meaningful when running NSCA in standalone mode.

Sending results over NSCA
N ow that our NSCA server is up and running, we can continue with actually
submitting results over the network. We will need the send_nsca client binary on all
of the machines that will report passive check results to Nagios.

Passive Checks and NSCA

[182]

There are various prebuilt binaries available at NagiosExchange, including a native
Win32 binary, which allows the sending of results from any check using NSCA. As it
is a prebuilt version, there is no need to compile or install it. Simply copy the binary
to a Windows machine, and it can be used with any valid NSCA client confi guration.

As with the NSCA server, the client uses a confi guration fi le. This requires the
specifi cation of the password and encryption_method parameters. A sample
confi guration that can be used in conjunction with the confi guration for a server
created earlier:

 password=ok1ij2uh3yg
 encryption_method=1

The NSCA client accepts the status results that should be sent out to the server on
standard input. Each line indicates a single result from a check. The syntax of the
host check result that should be passed to send_nsca is as follows:

 <hostname>[TAB]<return code>[TAB]<plugin output>

The return code is the same as that for sending passive checks—0 for UP, 1 for DOWN,
and 2 for UNREACHABLE.

Sending a passive service check result requires the specifi cation of the service name
as well:

 <hostname>[TAB]<service name>[TAB]<return code>[TAB]<plugin output>

In this case, the return codes are the same as the exit codes for checks, and are 0 for
OK, 1 for WARNING, 2 for CRITICAL, and 3 for UNKNOWN. Exit codes have been explained
in more detail in Chapter 4, Overview of Nagios Plugins. The command differentiates
the host and service checks by the number of fi elds that are passed in a line.

The N SCA client command has the following syntax:

 send_nsca -H <host_address> [-c config_file]

 [-p port] [-to to_sec] [-d delim]

The -H option specifi es the name of the NSCA server that messages should be
transmitted to. The option specifi es -p the port to send messages on; the port
defaults to 5667 if nothing is specifi ed. The timeout in seconds is specifi ed using the
-to fl ag. A fi eld delimiter can also be specifi ed using the -d option; if this is omitted,
it defaults to tab-delimited.

The easiest way to test if you can send data to NSCA correctly is to try to send a host
status for a valid computer. As send_nsca accepts information on standard input, it
is enough to run an echo command and send its output to the NSCA client.

Chapter 7

[183]

A sample script is provided as follows:

 #!/bin/sh

 HOST=localhost
 NSCAHOST=127.0.0.1

 echo -e "$HOST\t1\tHost temporarily down" | \
 /opt/nagios/bin/send_nsca –H $NSCAHOST
 –c /etc/nagios/send_nsca.cfg

 exit 0

The script will send a report that the host, localhost, is currently down with the
status description, Host temporarily down. The NSCAHOST variable is used to
specify the destination to which the NSCA server should send messages. While the
example above is set to 127.0.0.1, it should be replaced with the actual IP address
of your Nagios server.

A similar script can be written for sending service related reports to Nagios. The only
difference is that the return codes mean something different, and that the service
name is sent along with the host name.

The following is an example that sends a warning state:

 #!/bin/sh

 HOST=localhost
 SERVICE="NSCA test"
 NSCAHOST=127.0.0.1

 echo -e "$HOST\t$SERVICE\t1\tService in warning state" | \
 /opt/nagios/bin/send_nsca -H $NSCAHOST
 -c /etc/nagios/send_nsca.cfg

 exit 0

T his example sends out a warning status to Nagios over NSCA. The parameters
are very similar and the main difference is in the return codes. Morever, a service
description also needs to be passed; in this case, it is NSCA test.

If the service has max_check_attempts set to anything other than 1, the
script above needs to send out multiple status messages to Nagios. This
can be done by piping multiple echo commands into a single send_nsca.

Passive Checks and NSCA

[184]

Applications that pass multiple results over a short period of time might pass
multiple status results without having to re-run send_nsca for each of the result.
Instead, you can simply send multiple lines to the same send_nsca process, and
it will send information on all of the status to Nagios. This approach reduces the
overhead of spawning multiple new processes.

Security Concerns
 Both passive checks and NSCA allow the sending of the status about machines
and applications to Nagios. This produces several types of security concerns. If a
malicious user is able to send reports to Nagios, he or she can force a change to the
status of one or more objects by frequently sending its status. He or she can also
fl ood Nagios or NSCA with a large number of invalid requests that might cause
performance problems. This might stop Nagios from receiving actual passive check
results. For example, SNMP traps may not be passed to Nagios and, therefore, an
event handler will not be triggered to fi x a problem when it should have been.

This is why being able to send results to Nagios should be made as secure as
possible, so that only authorized applications can communicate with it. Securing
passive checks that are sent directly over external commands pipe is relatively easy.
It only requires the external commands pipe to be accessible to Nagios and to the
applications that are allowed to send data to it.

 Securing NSCA is a more complex issue and requires ensuring that every step
of the communication is secure. The fi rst step = is to make sure that the NSCA
confi guration fi les have adequate access rights. They should be set so that the
NSCA daemon and clients are able to read them, but other users cannot. In the
client case, the issue is that all users who invoke send_nsca should be able to read
its confi guration fi le. This will ensure that your NSCA password and encryption
methods cannot be read by unauthorized users.

Another thing that affects your setup security is whether the password used for
communications is strong. It is recommended that you use a random password
composed of lower case and upper case letters, as well as digits. It is also
recommended that you use one of the MCrypt based algorithms, and not use the
simple XOR algorithm.

The next step is to make sure that only authorized IP addresses are allowed to
send information to the NSCA server. This can be done either through xinetd
confi guration or by using a system fi rewall such as netfi lter ot iptables(http://www.
netfilter.org/) for Linux. In both cases, it is best to defi ne a list of allowed IPs and
automatically reject connections from unknown hosts.

Chapter 7

[185]

Summary
Nagios allows both the monitoring of services on its own, and the receipt of
information about computer and service statuses from other applications. Being able
to send results directly to Nagios creates a lot of opportunities for extending how
Nagios can be used.

Nagios can be integrated with external applications so that they report the status of
certain hosts and services. It also allows applications to report the status of services
that they use on the fl y. This can be used to make Nagios instantly aware of any
failures that occur within the IT infrastructure.

Passive checks can also be used for performing long-running tests and reporting the
the results of these to Nagios. Active checks usually have a very short timeout for
the check commands, whereas some tests require several minutes or even hours to
complete. In such cases, it is possible to schedule them outside Nagios and report the
results as passive checks.

Nagios also offers an additional component that can be used when tests need to
be performed on multiple computers. NSCA allows the sending of passive check
results over the Internet and the local area network. This makes it possible to pass
results that are gathered from different computers and report them directly to
Nagios. NSCA is designed in such a way that it can be easily integrated with other
applications, and all of the burden of authentication and encryption is left in the
NSCA client application.

NSCA is also used to report results when using multiple Nagios instances on
different computers. In these setups, the performance of checks is usually split
between different machines and reports are sent to a central Nagios server.

Pushing passive checks to Nagios also introduces security issues that should be
addressed when implementing such a set-up. Both the external commands pipe and
the NSCA that is used to send results to Nagios need to be set up in a secure manner
to avoid issues such as unauthorized results being retrieved by Nagios.

Monitoring Remote Hosts
Nagios offers various ways of monitoring computers, and the services offered by
them. Depending on how you need to check if your services are running correctly,
one of these ways will work best for you. The fi rst and the easiest way is to set up a
check that is performed from the Nagios server. This is a great way of monitoring
services that work over the network. Another possibility is to run applications on
one or more machines that report to the Nagios server using passive checks.

This chapter talks about another approach to service status checking. It uses Nagios
active checks that run the actual check commands on different hosts. This approach is
most useful in cases where resources local to a particular machine are to be checked.
A typical example is monitoring a disk or memory usage. Checking if your operating
system is up-to-date is also an example of such a test. This type of information is
usually only available by reading special fi les or calling system commands, and cannot
be checked without running commands on the target computer.

These tests can be done using two approaches. The fi rst approach is to use the SSH
protocol (Secure Shell; http://en.wikipedia.org/wiki/Secure_Shell) to connect
and run the Nagios plugins on the remote host. Here, the main advantage is that no
other additional server application needs to be run on remote machines. Therefore,
in some cases, it does not even require access to the administrative account to be set
up. It is also easier to have the installation done in the companies that have
restrictive network connectivity, as it uses only the SSH connection, and no other
port for communication.

Another approach is to use NRPE (Nagios Remote Plugin Executor) server
application on remote machines that will run Nagios plugins and pass results.
This requires the installation of additional software that needs to be run on remote
hosts, but has the advantage of greater confi guration options in terms of which
checks can be performed and which cannot be. NRPE daemon listens for
connections, and allows running tests on the machine it is running on, based on
certain predefi ned criteria.

Monitoring Remote Host

[188]

In both the cases, the situation might seem a bit similar to passive checks as
applications or computers report check results to Nagios. There is a great difference
between passive checks and remote checks. While passive checks require the
external applications to schedule checks by themselves, with remote checks, Nagios
is responsible for scheduling them. Checks can also be performed using the same
command plugins as the active checks. So migrating checks to remote hosts is a
relatively easy task.

Remote checks are usually used combined with the nagios-plugins package
using either SSH or NRPE to run the plugins on the remote machine. This makes
monitoring remote systems very similar to monitoring local computer, with a
difference only in how the commands are actually run on the remote machine.

Monitoring over SSH
 Very often, Nagios is used to monitor computer resources such as CPU utilization,
memory, and disk space. One way in which this can be done is to connect over SSH
and run a Nagios check plugin.

This requires setting up SSH to authenticate using public keys. This works so that
Nagios server has an SSH private key, and the target machine is confi gured to allow
users with that particular key to connect without prompting them for password.

Nagios offers a plugin, check_by_ssh, that takes the host name and the actual
command to run on the remote server. It then connects using SSH, runs the plugin,
and returns both output and exit code from the actual check performed on the
remote machine to Nagios running on the local server. Internally, it runs SSH client
to connect to it and runs the actual command to run along with its attributes. After
the check has been performed, the output, along with the check command's exit
code, is passed back to Nagios.

Thanks to this, regular plugins can be run from the same machine as the Nagios
daemon, as well as remotely over SSH without any changes to the plugins. Using
SSH protocol also means that authorization process can be automated using key
based authentication so that each check is done without any user activity. This
way Nagios is able to log in to remote machines automatically without using
any passwords.

Chapter 8

[189]

The following is an illustration of how such a check is performed:

Nagios server Remote machine

Store check
results

SSH server Nagios plugin

Accept connection
Run plugin check

Perform check

Pass output and
exit code

Nagios daemon check_by_ssh SSH client

Schedule an
active check

Run SSH client

Connect to remote
computer

Receive results
from remote host

Pass results to
Nagios

Once Nagios schedules an active check to be performed, the check_by_ssh plugin
runs the ssh command to connect to the remote host's SSH server. It then runs the
actual plugin, which is located on the remote host, waits for the result, and passes
it back over to the SSH protocol. SSH client passes this information down to the
check_by_ssh plugin which, in the end, passes it back to the Nagios daemon.

E ven though the scenario might seem a bit complicated, it works quite effi ciently
and requires little setup to work properly. It also works with various fl avors of UNIX
systems as both SSH protocol, clients, and the shell syntax for commands used by the
check_by_ssh plugin is the same on all the systems.

Configuring SSH
S etting up remote checks over SSH requires a few steps. The fi rst step is to create
a dedicated user for performing checks on the machine that they will be run on.
We will also need to set up directories for the user. This is very similar to the steps
performed for the entire Nagios installation.

Monitoring Remote Host

[190]

The fi rst thing that needs to be performed on the Nagios server is to create a private
and public key pair that will be used to log into all remote machines without using
a password. We will need to execute the ssh-keygen command to generate it. A
sample session is shown below:

 root@nagiosserver:~# su -s /bin/bash nagios
 nagios@nagiosserver:~$ ssh-keygen
 Generating public/private rsa key pair.
 File in which to save the key (/opt/nagios/.ssh/id_rsa): <enter>
 Created directory '/opt/nagios/.ssh'.
 Enter passphrase (empty for no passphrase): <enter>
 Enter same passphrase again: <enter>
 Your identification has been saved in /opt/nagios/.ssh/id_rsa.
 Your public key has been saved in /opt/nagios/.ssh/id_rsa.pub.
 The key fingerprint is:
 c9:68:47:bd:cd:6e:12:d3:9b:e8:0d:cf:93:bd:33:98 nagios@nagiosserver
 nagios@nagiosserver:/root$

As in most cases, it was not possible to log in as user nagios directly, we used the su
command to switch users along with the -s fl ag to force the shell to be /bin/bash.
<enter> text means that the question was answered with the default reply.

The private key is saved as /opt/nagios/.ssh/id_rsa, and the public key has been
saved in the /opt/nagios/.ssh/id_rsa.pub fi le.

Next, we need to set up remote machines that we will monitor. All the following
commands should be executed on the remote machine that is to be monitored, unless
explicitly mentioned.

F irst, let's create user and group named nagios:

groupadd -g 5000 nagios
useradd -u 5000 -g nagios -d /opt/nagios nagios

We do not need the nagioscmd group as we will need only the account to be able to
log into the machine. The computer that only performs checks does not have a full
Nagios installation along with the external command pipe that needs a
separate group.

T he next thing that needs to be done is to compile Nagios plugins. You will probably
also need to install prerequisites that are needed for Nagios. Detailed instructions on
how to do this can be found in Chapter 2, Installation and Confi guration.

For the rest of the section, we will assume that the Nagios plugins are installed in
/opt/nagios/plugins directory, similar to how they would be installed on the
Nagios server.

Chapter 8

[191]

It is best to install plugins in the same directory on all the machines they will be
running on. In this case, we can use the $USER1$ macro defi nition when creating the
actual check commands in the main Nagios confi guration. USER1 macro points to the
location where Nagios plugins are installed in the default Nagios installations. This
is described in more detail in Chapter 2.

Next, we will need to create the /opt/nagios directory and set its permissions:

mkdir /opt/nagios
chown nagios.nagios /opt/nagios
chmod 0700 /opt/nagios

Y ou can make Nagios permissions less restrictive by setting the mode to 0755. But it
is recommended not to make the users' home directories readable by all users.

We will now need to add the public key from the nagios user on the machine that is
running the Nagios daemon.

mkdir /opt/nagios/.ssh

echo 'ssh-rsa … nagios@nagiosserver' \
 >>/opt/nagios/.ssh/authorized_keys

chown nagios.nagios /opt/nagios/.ssh /opt/nagios/.ssh/authorized_keys
chmod 0700 /opt/nagios/.ssh /opt/nagios/.ssh/authorized_keys

When actually running the command, you should replace the entire text, ssh-
rsa … nagios@nagiosserver, with the actual contents of the /opt/nagios/.ssh/
id_rsa.pub fi le on the computer running the Nagios daemon. If your machine is
maintained by more than one person, you might replace the nagios@nagiosserver
string to a more readable comment such as Nagios on nagiosserver SSH
check public key.

M ake sure to change permissions of both the .ssh directory and the authorized_
keys fi le as many SSH server implementations ignore public key based authorization
if the fi les' permissions are too wide.

In order to confi gure multiple remote machines to be accessible over ssh without a
password, you will need to perform all the steps mentioned earlier except for key
generation at the computer running Nagios server, as a single private key will be
used to access multiple machines.

Assuming everything was done successfully, we can now move on to testing if the
key based authorization actually works. To do that, we will try to run the ssh client
in verbose mode and see whether using the previously generated key works fi ne.

Monitoring Remote Host

[192]

In order to check that our connection can now be successfully established, we need
to try to connect from the computer that has the Nagios daemon running to the
remote machine. We will use the ssh client with the verbose fl ag to be sure that our
connection works properly:

nagios@nagiosserver:~$ ssh -v nagios@192.168.2.1
OpenSSH_4.6p1 Debian-5ubuntu0.2, OpenSSL 0.9.8e 23 Feb 2007
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to 192.168.2.1 [192.168.2.1] port 22.
debug1: Connection established.
debug1: identity file /opt/nagios/.ssh/id_rsa type 1
(...)
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
The authenticity of host '192.168.2.1 (192.168.2.1)' can't be
established.
RSA key fingerprint is cf:72:1e:40:03:a4:e0:9b:6c:84:4e:e1:2d:ea:56:
fc.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.1' (RSA) to the list of known
hosts.
 debug1: ssh_rsa_verify: signature correct
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: SSH2_MSG_SERVICE_REQUEST sent
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey,password
debug1: Next authentication method: publickey

debug1: Offering public key: /opt/nagios/.ssh/id_rsa

debug1: Server accepts key: pkalg ssh-rsa blen 277

debug1: read PEM private key done: type RSA

debug1: Authentication succeeded (publickey).

debug1: channel 0: new [client-session]
debug1: Entering interactive session.
debug1: Sending environment.
debug1: Sending env LANG = en_US.UTF-8
$

Chapter 8

[193]

As we were connecting to the remote machine for the fi rst time, ssh prompted us to
check whether we had accepted the remote machine's key to a list of known hosts.
This needs to be done only once for a specifi c host.

Also, note that we need to test the connection from the nagios account so that the
keys that are used for authentication, as well as the list of known hosts are the same
ones that will be used by the Nagios daemon later.

Assuming we have Nagios plugins installed on the remote machine in the /opt/
nagios/plugins directory, we can try to use check_by_ssh plugin from the
computer running Nagios to the remote machine by running:

nagios@nagiosserver:~$ /opt/nagios/plugins/check_by_ssh \
 -H 192.168.2.1 -C "/opt/nagios/plugins/check_apt"
APT OK: 0 packages available for upgrade (0 critical updates).

We are now sure that the checking itself works fi ne, and we can move on to how
check_by_ssh can be used and what its syntax is.

 Using the check_by_ssh Plugin
A s mentioned earlier, Nagios uses a separate check command that connects to a
remote machine over SSH and runs the actual check command on it. The command
has very powerful features and can be used to query a single service status by using
active checks and can be used to perform and report multiple checks at once as
passive checks.

The following is the syntax of the command:

check_by_ssh -H <host> -C <command> [-fqv] [-1|-2] [-4|-6]
 [-S [lines]] [-E [lines]] [-t timeout] [-i identity]
 [-l user] [-n name] [-s servicelist] [-O outputfile]
 [-p port] [-o ssh-option]

The following table describes all options accepted by the plugin. Items required are
marked in bold:

Option Description
-H, --hostname The host name or IP address of the machine to connect to; this option

must be specifi ed
-C, --command The full path of the command to be executed on the remote host

along with any additional arguments; this option must be specifi ed
-l, --logname Log in as a specifi c user name; if omitted, it defaults to the current

user (usually nagios) or any other specifi ed in the per-user SSH
client confi guration fi le

Monitoring Remote Host

[194]

Option Description
-I, --identity Path to the SSH private key to be use for authorization; if omitted

then ~/.ssh/id_rsa is used by default
-o, --ssh-option Allows passing SSH specifi c options that will be passed as the -o

option to the ssh command
-q, --quiet Stops SSH from printing a warning and information messages
-w, --warning Specifi es time in seconds after which the connection should be

terminated and a warning should be issued to Nagios
-c, --critical Specifi es time in seconds after which the connection should be

terminated and a critical should be issued to Nagios
-t, --timeout Specifi es time in seconds after which the connection should be

terminated and checks should be stopped; defaults to 10 seconds
-p, --port Port to connect over SSH to; defaults to 22
-1, --proto1 Use SSH protocol version 1
-2, --proto2 Use SSH protocol version 2; this is the default
-4 Use IPv4 protocol for SSH connectivity
-6 Use IPv6 protocol for SSH connectivity
-S, --skip-stdout Ignore all or the provided number of lines from standard output
-E, --skip-stderr Ignore all or the provided number of lines from standard error
-f Tells SSH to work in the background just after connecting instead of

using a terminal

The only required fl ags are -H for specifying the IP address or host name to connect
to as well as -C for specifying the command to be used. The remaining parameters
are optional. If they are not passed, SSH defaults and the timeout of 10 seconds will
be used.

 The -S and -E options are used to skip messages that are written by the SSH client
or by the remote machine regardless of the commands executed—for example, to
properly check machines printing MOTD, even for non-interactive sessions, it is
required to skip it by using one of the options.

When specifying commands, they usually need to be enclosed in single or double
quotation marks. This is because the entire command that should be run needs to
be passed to check_by_ssh as a single argument. If one or more arguments contain
spaces, single quote characters will have to be used.

Chapter 8

[195]

For example, when checking for disk usage remotely, we need to quote the entire
command as well, as it's safer to quote the path to the drive we're checking as
shown here:

nagios@nagios1:~$ /opt/nagios/plugins/check_by_ssh -H 192.168.2.1 -C \
 "/opt/nagios/plugins/check_disk -w 15% -c 10% -p '/'"
DISK OK - free space: / 243 MB (17% inode=72%)

The preceding example is a typical usage of check_by_ssh plugin as an active check.
It performs a single check and returns the status directly using standard output and
exit code. This is how it is used as an active check from within Nagios.

If you want to use check_by_ssh to deploy checks locally on the same machine
as Nagios is running, you will need to add the SSH key from id_rsa.pub to the
authorized_keys fi le on that machine as well. In order to verify that it works
correctly, try logging in to the local machine over SSH.

Now that the plugin works when invoked manually, we need to confi gure Nagios to
make use of it.

Usually, for commands that will be performed both locally and remotely, the
approach is to create a duplicate entry for each command with a prefi x, for example,
_by_ssh. Assuming we have the following command that checks swap usage locally,
the defi nition is as follows:

 define command
 {
 command_name check_swap
 command_line $USER1$/check_swap –w $ARG1$ -c $ARG2$
 }

 Then assuming we will also check the swap usage on remote machines, we need to
defi ne the following remote counterpart:

 define command
 {
 command_name check_swap_by_ssh
 command_line $USER1$/check_by_ssh –H $HOSTADDRESS$ –C
 "$USER1$/check_swap –w $ARG1$ -c $ARG2$"
 }

Monitoring Remote Host

[196]

Usually, services are defi ned for groups—for example, a service should be defi ned to
check swap space usage on all Linux servers. In such cases, you can use the check_
swap_by_ssh command even for checking the local machine—the overhead for
such a check is larger than the one for calling the plugin directly. But in many cases,
it makes managing the confi guration much easier. You can also set up two sets of
services similar to the following example:

 define service
 {
 use generic-service
 host_name localhost
 service_description SWAP
 check_command check_swap
 }

 define service
 {
 use generic-service
 host_name !localhost
 hostgroup_name linux-servers
 service_description SWAP
 check_command check_swap_by_ssh
 }

This way, localhost will use the check_swap command and all the remaining
machines that are part of the linux-servers host group will use the check_swap_
by_ssh check command.

This way, you can slightly reduce the overhead related to monitoring the machine
Nagios is running on.

Performing Multiple Checks
 A completely different approach is to make check_by_ssh perform multiple tests
and report them directly to Nagios over the external command pipe. This way, the
results are sent to Nagios as passive check results. So, specifi ed services need to
accept passive check results.

The reason for this approach is that SSH protocol negotiations introduce a lot of
overhead related to the protocol itself. For hosts with heavy load, it is more effi cient
to log in once and run all the checks instead of performing a complete login for
each check.

Chapter 8

[197]

 A drawback of doing multiple checks is that it is not trivial to schedule these directly
from Nagios. The typical approach to passive checks is to schedule checks from
an external application such as cron (http://man.linuxquestions.org/index.
php?query=cron).

An alternate approach is to create a dummy service that will launch passive checks
in the background. The actual result for this service would also be to check whether
running the tests was successful or not. Another benefi t of this approach is that the
checks will be performed even if the cron daemon is currently disabled, as Nagios
will still take care of scheduling the checks by itself.

When using check_by_ssh to report multiple results as passive checks, the following
options need to be specifi ed:

Option Description
-n, --name The short name of the host that the tests refer to; this is the name of

the host that will be used when sending the results over the external
command pipe

-s, --services The names of the services that the tests refer to, separated by colon;
these are the names of services that will be used when sending results
over the external pipe; separated by colon

-O, --output Path to the external command pipe that the results of all the checks
should be sent to

The options above are specifi c to performing multiple checks only. The remaining
options described earlier must also be specifi ed—especially the -H and -C options.
The second one needs to be specifi ed multiple times, each for one check.

The number of -C parameters must match the number of entries in the -s parameter
so that each result can be mapped to a service name.

The following example reports disk check results for three partitions:

/opt/nagios/plugins/check_by_ssh -H 192.168.2.1 -O /tmp/out1 -n
ubuntu1 \
 -s "DISK /:DISK /usr:DISK /opt" \
 -C "/opt/nagios/plugins/check_disk -w 15% -c 10% -p /" \
 -C "/opt/nagios/plugins/check_disk -w 15% -c 10% -p /usr" \
 -C "/opt/nagios/plugins/check_disk -w 15% -c 10% -p /opt"

Monitoring Remote Host

[198]

This command will put the output into /tmp/out1, similar to the following example:

[1206096000] PROCESS_SERVICE_CHECK_RESULT;ubuntu1;DISK /:DISK
CRITICAL...
[1206096000] PROCESS_SERVICE_CHECK_RESULT;ubuntu1;DISK /usr:DISK OK
...
[1206096000] PROCESS_SERVICE_CHECK_RESULT;ubuntu1;DISK /opt:DISK OK
...

As mentioned previously, it is very common to write a script that is run as an active
check. This script is set up as a service that is only responsible for running multiple
checks for other services. Results from those services are passed as passive
check results.

The following is a sample script that runs several tests and reports their results back
to Nagios:

 #!/bin/sh

 COMMANDFILE=$1
 HOSTNAME=$2
 HOSTADDRESS=$3
 PLUGINPATH=$4

 $PLUGINPATH/check_by_ssh –H $HOSTADDRESS –t 30 \
 –o $COMMANDFILE –n $HOSTNAME \
 -s "SWAP:Root Partition:Processes:System Load" \
 -C "$PLUGINPATH/check_swap –w 20% -c 10%" \
 -C "$PLUGINPATH/check_disk –w 20% -c 10% -p /" \
 -C "$PLUGINPATH/check_procs –w 100 –c 200" \
 -C "$PLUGINPATH/check_load –w 5,3,2 –c 10,8,7" \
 (
 echo "BYSSH CRITICAL problem while running SSH"
 exit 2
)

 echo "BYSSH OK checks launched"
 exit 0

For the remaining part of the section, let's assume the script is in the /opt/nagios/
plugins directory and is called check_linux_services_by_ssh.

The script will perform several checks, and if any of them fail, it will return a critical
result as well. Otherwise, it will return an OK status and the remaining results will be
passed as passive check results.

Chapter 8

[199]

We will also need to confi gure Nagios, both services that will receive their results as
passive checks, and the service that will actually schedule the checks, properly.

All the services that are checked via the check_by_ssh command itself have a very
similar defi nition. They only need to accept passive checks and don't have any active
checks scheduled.

The following is a sample defi nition for the SWAP service:

 define service
 {
 use generic-service
 host_name !localhost
 hostgroup_name linux-servers
 service_description SWAP
 active_checks_enabled 0
 passive_checks_enabled 1
 }

All other services will also need to have a very similar defi nition. We might also
defi ne a template for such services and only create services that use it. This will make
the confi guration more readable.

Now, we need to defi ne a command defi nition that will launch the passive check
script written earlier:

 define command
 {
 command_name check_linux_services_by_ssh
 command_line $USER1$/check_linux_services_by_ssh
 "$COMMANDFILE$"
 "$HOSTNAME$" "$HOSTADDRESS$" "$USER1$"
 }

All the parameters that are used by the script are passed directly from Nagios
confi guration. This makes reconfi guring various paths easier to manage.

The next step is to defi ne an actual service that will run these checks:

 define service
 {
 use generic-service
 host_name !localhost
 hostgroup_name linux-servers
 service_description Check Services By SSH
 active_checks_enabled 1
 passive_checks_enabled 0

Monitoring Remote Host

[200]

 check_command check_linux_services_by_ssh
 check_interval 30
 check_period 24x7
 max_check_attempts 1
 notification_interval 30
 notification_period 24x7
 notification_options c,u,r
 contact_groups linux-admins
 }

This will cause the checks to be scheduled every 30 minutes. It will also notify Linux
administrators if any problem occurs with scheduling the checks.

 An alternative approach is to use the cron daemon to schedule the launch of the
previous script. In such a case, the Check Services By SSH service is not needed.
In this case, scheduling of the checks is not done in Nagios, but we will still need to
have the services for which the status will be reported defi ned.

In such a case, we need to make sure that cron is running to have up-to-date results
for the checks. Such verifi cation can be done by monitoring the daemon using Nagios
and the check_procs plugin.

The fi rst thing that needs to be done is to slightly adapt the script not to print out
results in case everything worked fi ne, and to hardcode paths to the Nagios fi les:

#!/bin/sh

 COMMANDFILE=/vat/nagios/rw/nagios.cmd

 PLUGINPATH=/opt/Nagios/plugins

 HOSTNAME=$1

 HOSTADDRESS=$2

 $PLUGINPATH/check_by_ssh –H $HOSTADDRESS –t 30 \
 –o $COMMANDFILE –n $HOSTNAME \
 -s "SWAP:Root Partition:Processes:System Load" \
 -C "$PLUGINPATH/check_swap –w 20% -c 10%" \
 -C "$PLUGINPATH/check_disk –w 20% -c 10% -p /" \
 -C "$PLUGINPATH/check_procs –w 100 –c 200" \
 -C "$PLUGINPATH/check_load –w 5,3,2 –c 10,8,7" \
 || (
 echo "BYSSH CRITICAL problem while running SSH"
 exit 2
)

 #echo "BYSSH OK checks launched"

 exit 0

Chapter 8

[201]

Actual changes have been highlighted.

The next step is to add entry to the Nagios user, crontab. This can be done by
running the crontab -e command as the nagios user, or crontab -u nagios -e
command as the administrator. Assuming the check should be performed every 30
minutes, the crontab entry should be as follows:

 */30 * * * * /opt/nagios/plugins/check_linux_services_by_ssh

For more details on how an entry in crontab should look like, please consult the
corresponding manual page (http://linux.die.net/man/5/crontab).

Troubleshooting SSH-Based Checks
 If you have followed the steps from the previous sections carefully, then most
probably, everything should be working smoothly. However, in some cases, your
setup might not be working properly, and you will need to fi nd the root cause of
the problem.

The fi rst thing that you should start with is to use the check_ssh plugin to make
sure that SSH is accepting connections on the host we are checking. For example, we
can run the following command:

root@ubuntu1:~# /opt/nagios/plugins/check_ssh -H 192.168.2.51
SSH OK - OpenSSH_4.7p1 Debian-8ubuntu1.2 (protocol 2.0)

Where 192.168.2.51 is the name of IP address of the remote machine we want
to monitor. If no SSH server is set up on the remote host, the plugin will return
Connection refused status, and if it failed to connect, the result will state No route
to host. In these cases, you need to make sure SSH server is working, and that all
routers and fi rewalls do not fi lter out connections for SSH—which is TCP port 22.

Assuming SSH server is accepting connections, the next thing that can be checked is
whether SSH key-based authorization works correctly. To do this, switch to the user
the Nagios process is running as. Next, try to connect to the remote machine. The
following are sample commands to perform this check:

root@ubuntu1:~# su nagios -
$ ssh -v 192.168.2.51

Monitoring Remote Host

[202]

This way, you will check the connectivity as the same user that Nagios is running
checks at. You can also analyze the logs that will be printed to the standard output
as described earlier in this chapter. If SSH client will prompt you for a password,
then your keys are not set up properly. It is a common mistake to set up keys on the
root account instead of setting them up on the nagios account. If this is the case,
then create a new set of keys as a correct user and verify whether these keys work
correctly now.

Assuming this step worked fi ne, the next thing to be done is to check whether
invoking an actual check command produces correct results. For example:

root@ubuntu1:~# su nagios -
$ ssh 192.168.2.51 /opt/nagios/plugins/check_procs
PROCS OK: 51 processes

This way, you will check the connectivity as the same user that Nagios is running
checks at.

 The last check is to make sure that the check_by_ssh plugin also returns correct
information. An example of how to do this is as follows:

root@ubuntu1:~# su nagios -
$ /opt/nagios/plugins/check_by_ssh -H 192.168.2.1 \
 /opt/nagios/plugins/check_procs
PROCS OK: 52 processes

If the last step also worked correctly, it means that all check commands are working
correctly. If you still have issues with running the checks, then the next thing you
should investigate is if Nagios has been properly confi gured, whether all commands,
hosts, and services are set up in the correct way.

Introduction to NRPE
 Nagios Remote Plugin Executor (NRPE) is a daemon for running check commands
on remote computers. It is designed explicitly to allow the central Nagios server to
trigger checks on other machines in a secure manner.

Chapter 8

[203]

NRPE offers a very good security mechanism along with encryption mechanisms.
It is possible to specify a list of machines that can run checks via NRPE, and which
plugins can be run along with aliases that should be used by the central
Nagios server.

 The main difference is that the communication overhead is much smaller than for
the SSH checks. This means that both central Nagios server and the remote machine
need less CPU time to perform a check. This is mainly important for Nagios servers
that deal with a lot of checks performed remotely on machines. If the SSH overhead
compared to NRPE is only one second, then for performing 20,000 checks, it is 5.5
hours spent on negotiations that can be saved.

It also offers a better level of security than using SSH mechanisms in terms of the
remote machine's safety. It does not provide complete access to the destination
machines from the Nagios central server and forbids running any commands outside
predefi ned check commands. This is very important in situations where Nagios is
monitoring machines that might store sensitive information. In such a case, SSH
based solution might not be acceptable due to security policies.

NRPE checks work similar to SSH checks in many aspects. In both the cases, the
Nagios check command connects to the remote machine and sends a request to run
a plugin installed on that machine. NRPE uses a custom protocol. It offers more
fl exibility in terms of what can be executed and what not, as well as which hosts can
connect to the NRPE daemon running on the remote machine. It also requires much
less overhead to send the command to NRPE and receive output from it.

Another difference compared to the SSH-based checks is that NRPE allows running
only a single command and can be used so that results are passed back as active
checks. The feature of performing multiple checks that the check_by_ssh plugin
offers is not possible using NRPE.

Monitoring Remote Host

[204]

NRPE uses the TCP protocol with SSL (Secure Socket Layer) encryption on top of
it. Enabling encryption is optional, but it is recommended for companies that require
security to be at a high level. By default, NRPE communicates on port 5666. The
connection is always made from the machine running Nagios daemon to the remote
machine. If your company has fi rewalls set up for local connectivity, make sure that
you allow communications from port 5666 that originate from your Nagios servers.
The following is an illustration of how such a check is performed.

Nagios server Remote machine

NRPE daemon Nagios plugin

Accept connection
Run plugin check

Perform check

Pass output and exit
code

Nagios process check_nrpe

Schedule an active
check

Connect to remote
machine

Receive results and
pass them to Nagios

Store check results

Nagios determines that an active check should be performed. It runs the check_nrpe
plugin that connects to the remote host's NRPE daemon. After the NRPE daemon
accepts this as a valid host to send commands to, check_nrpe sends the command to
be run along with any parameter to the remote machine.

Next, the NRPE daemon translates these into the actual system command to be run.
In case the specifi ed command is not confi gured to be run, NRPE daemon will reject
this request. Otherwise, it will run the command and pass the results back to
check_nrpe on the machine hosting the Nagios daemon. This information is then
passed back to the Nagios daemon and stored in the data fi les and/or databases.

The NRPE package consists of two parts—the NRPE daemon and the NRPE check
command. The fi rst one needs to be running on all remote machines that are to be
monitored using this method. The NRPE check command (check_nrpe) is a Nagios
plugin for performing active checks and needs to be installed on the machine on
which Nagios daemon is running.

Chapter 8

[205]

Obtaining NRPE
N RPE is a core add-on for Nagios, and is maintained by the Nagios development
team. NRPE can be downloaded as both source code and binary packages. In the
fi rst case, you can compile NRPE from sources by yourself; in the latter, you have a
ready-to-use set of binaries.

The NRPE source package can be downloaded from the Nagios download page
(http://www.nagios.org/download/). NRPE can be found in the Addons section of
the page. The fi le is named in the form of nrpe-2.1.12.tar.gz.

Many Linux distributions already contain prebuilt NRPE binaries. If you want to use
precompiled packages instead of building them yourself, then this is the way to go.

For Ubuntu Linux, the package names are nagios-nrpe-server and nagios-nrpe-
plugin for the daemon and client respectively.

For Ubuntu, the command to install the client and the server is as follows:

apt-get install are nagios-nrpe-server nagios-nrpe-plugin

For RHEL (Red Hat Enterprise Linux), CentOS, and Fedora systems that have yum
installed, the package names are nagios-nrpe and nagios-plugins-nrpe for the
daemon and the client respectively.

The command to install both client and server is as follows:

yum install nagios-nrpe nagios-plugins-nrpe

Microsoft Windows of the NRPE daemon can be found in the NRPE_NT
(http://sourceforge.net/projects/nrpent/) project on SourceForge. It offers
the same functionality as its UNIX version and is confi gured in the same way.

The main difference in the Microsoft Windows version is that the Nagios plugins do
not provide the Windows version, so you will need to compile Nagios plugins using
the Cygwin package (visit http://www.cygwin.com/).

You can also provide only your own check commands and set up NRPE_NT to
use those. In the case of Microsoft Windows, it is important to remember that your
plugins need to be command line tools and cannot be created as GUI–based tools.

Compiling NRPE
I f you are using NRPE from prebuilt packages, you can skip this section and resume
with the NRPE confi guration information.

Monitoring Remote Host

[206]

Compiling NRPE requires a standard compiler, linker, and similar tools to be present
on your system. It also needs the OpenSSL package along with the actual openssl
command line, which is used to generate the Diffi e-Hellman key for each instance.

On an Ubuntu Linux system, installing the prerequisite packages can be done by
performing the following command:

apt-get install gcc make binutils cpp pkg-config libc6-dev \
 libssl-dev openssl

For other systems, the commands and package names might differ a bit, but should
be very similar.

It is also recommended to install the same prerequisites as those for compiling
Nagios and the Nagios plugins. These packages should already be there from when
the actual plugins were built, but in case the compilation fails, it would be a good
idea to install all packages that were also used for the Nagios build.

For Ubuntu Linux, this would require running the following command:

apt-get install gcc make binutils cpp libpq-dev libmysqlclient15-dev \
 libssl0.9.8 libssl-dev pkg-config apache2 \
 libgd2-xpm libgd2-xpm-dev libgd-tools \
 libpng12-dev libjpeg62-dev \
 perl libperl-dev libperl5.8 libnet-snmp-perl

More information on what packages should be installed on other operating systems,
and how to do this, can be found in Chapter 2, Installation and Confi guration.

Now that our packages are set up, the next step is to run the configure script that
will set up the NRPE parameters and create the Diffi e-Hellman key.

For standard paths and users that were used in Chapter 2, the command is
as follows:

sh configure \
 --sysconfdir=/etc/nagios \
 --libexecdir=/opt/nagios/plugins \
 --prefix=/opt/nagios \
 --localstatedir=/var/nagios \
 --with-nrpe-user=nagios \
 --with-nrpe-group=nagios \
 --with-nagios-user=nagios \
 --with-nagios-group=nagios \
 --enable-ssl

Chapter 8

[207]

If running the confi gure script failed, it is probably because one or more required
packages are missing. If this happens, verify whether all packages mentioned earlier
in the chapter have been installed, and then try again.

The next step is to actually build the NRPE client and daemon. To do this, run the
following command:

make all

This command will build both binaries and create sample confi guration fi les for the
NRPE daemon.

 It is a very common problem that the build fails, claiming that the get_dh512
function could not be found. The problem is not obvious. In this case, please make
sure that the openssl command is installed and the directory where it is located is
added to the PATH environment variable, and then run all of the steps, starting with
the configure script, again.

The problem is that the configure script tries to generate a Diffi e-Hellman key—if
a problem exists during this step. Then the script itself does not fail to complete, but
the build process eventually fails. Please make sure that somewhere at the end of the
output from the confi gure script, a text similar to the one that follows is printed out:

 *** Generating DH Parameters for SSL/TLS ***
 Generating DH parameters, 512 bit long safe prime, generator 2
 This is going to take a long time
 +..............+...........+........++*+*++*++*++*++*

I f the openssl command is not present, the following error will show up instead:

*** Generating DH Parameters for SSL/TLS ***
configure: line 6703: /usr/bin/openssl: No such file or directory

If the compilation process fails for any other reason, it is most probably due to
missing libraries or header fi les. In this case, installing the packages mentioned
earlier will help.

Assuming that the build succeeded, the next step is to install either the NRPE client
or the daemon. On the machine that is running the Nagios daemon, we need to
install the client (check_nrpe) command. To do this, type the following command:

make install-plugin

Monitoring Remote Host

[208]

This command will copy the check_nrpe command to the /opt/nagios/plugins
directory. NRPE does not require any confi guration fi le for the NRPE client and,
hence, no additional fi le needs to be copied.

For all of the remaining machines, please run the following command to install the
NRPE daemon:

make install-daemon

This command will copy the nrpe binary to the /opt/nagios/bin directory.

Because the NRPE daemon requires confi guration, it is recommended that you copy
the sample-config/nrpe.cfg fi le as /etc/nagios/nrpe.cfg.

Configuring the NRPE Daemon
 Our NRPE daemon is now built and ready to be deployed on the remote machines.
We need to confi gure it and set up the system so that it accepts connections from
other computers.

The NRPE daemon should use a separate user and password.

First, let's create a user and a group named nagios:

groupadd -g 5000 nagios
useradd -u 5000 -g nagios -d /opt/nagios nagios

We also need to create a home directory for the user, and it is a good idea to lock out
access for that user if no checks are to be performed over SSH. To do this, run the
following commands:

mkdir /opt/nagios
chown nagios.nagios /opt/nagios
passwd -l nagios

There are many ways of setting this up—NRPE can work either as a standalone
process that handles incoming connections, or as part of the inetd (http://
en.wikipedia.org/wiki/inetd) or the xinetd (http://www.xinetd.org/) setup.
In all cases, a confi guration fi le is needed. This fi le specifi es the commands to be used
and the additional options for running the NRPE daemon standalone.

The confi guration fi le is similar to the main Nagios confi guration fi le—all parameters
are written in the form of <name>=<value>. If you have compiled NRPE from the
source, then a default confi guration can be found in the sample-config/nrpe.
cfg fi le.

Chapter 8

[209]

A sample NRPE confi guration script that will work for both standalone installations
as well as under inetd is as follows:

 log_facility=daemon
 pid_file=/var/run/nrpe.pid
 server_port=5666
 nrpe_user=nagios
 nrpe_group=nagios
 allowed_hosts=192.168.2.51
 command_timeout=60
 connection_timeout=300
 debug=0

The fi rst series of parameters includes information related to logging. NRPE uses
standard UNIX logging mechanisms. The log_facility parameter specifi es the
syslog facility name to be used for logging. The default value is daemon, but it can be
set to any of the predefi ned syslog facility names.

 A standalone NRPE daemon also allows the setting up of the IP address and the
port to listen to, as well as the user and group names to be used. In order to
specify that NRPE should listen only on a specifi c IP address, you need to use the
server_address parameter. If this parameter is omitted, then the NRPE will listen
on all network interfaces. The server_port parameter is used to specify the port
number NRPE should listen on. If NRPE should accept connections only from a
predefi ned list of machines, you need to specify the allowed_hosts parameter,
which will contain a list of all the IP addresses of these machines, separated
by commas.

For security reasons, NRPE usually runs as a separate user. The options to specify
the user and group names that should be used by NRPE are nrpe_user and
nrpe_group respectively.

We can also specify the fi le to which NRPE should write the PID of the daemon
process—this is useful in the startup scripts that can read this fi le to terminate any
NRPE processes during a restart of the service. The option name is pid_file.

We can also tell NRPE how long a command can run for. The fi rst option is
command_timeout, and it tells NRPE how many seconds a command can run before
it should be stopped. If a command is running for more than the specifi ed number of
seconds, it is terminated, and a CRITICAL status is sent back to the NRPE client.

The connection_timeout option specifi es the time in seconds after which a
connection should be closed if no data has been received. This does not change the
way the command times out, and only specifi es how much time NRPE should wait
for a command to be sent.

Monitoring Remote Host

[210]

NRPE also offers a debug option that can specify whether it should record a large
amount of information in the system log. A value of 1 enables verbose logging and 0
disables it. This should be disabled in production, but can be useful during the initial
runs in case you run into a problem.

The next step is to confi gure the commands that can be used by the other machines.
The NRPE commands defi ne aliases for the actual commands that will be executed.
All commands have a unique name and the actual command line to be run.

Usually, command names are the plugin names or the plugin names with some
description appended. For example, the check_disk based command that checks the
/home directory could be called check_disk_home.

Each command is defi ned as command[<command_name>]=<command_to_execute>.
Each command_name can be used only once, and there is no possibility of defi ning
which hosts can run which commands. The same set of commands can be run by all
hosts specifi ed in the allowed_hosts parameter.

An example command defi nition to use check_disk to verify the space on the root
partition is as follows:

command[check_disk_sys]=/opt/nagios/plugins/check_disk -w 20% -c 10%
 -p /

 It would be a good idea to create a template confi guration that will contain the
typical checks and the hosts that should be allowed to run the checks. These can be
modifi ed later for individual hosts, but using a template makes it easier to deploy for
a large number of boxes. A typical set of commands would be as follows:

command[check_rootdisk]=/opt/nagios/plugins/check_disk -w 20% -c 10%
 -p /
command[check_swap]=/opt/nagios/plugins/check_disk -w 40% -c 20%
command[check_sensors]=/opt/nagios/plugins/check_sensors
command[check_users]=/opt/nagios/plugins/check_users -w 10 -c 20
command[check_load]=/opt/nagios/plugins/check_load -w 10,8,5 -c
 20,18,15
command[check_zombies]=/opt/nagios/plugins/check_procs -w 5 -c 10 -s
 Z
command[check_all_procs]=/opt/nagios/plugins/check_procs -w 150 -c
 200

Please note that the parameters for several plugins may be changed according to
your preferences, but they do represent reasonable defaults.

Chapter 8

[211]

In case you need to troubleshoot why a check is failing, it would be a good idea to
set the debug parameter to 1 in nrpe.cfg. If NRPE is running in standalone mode,
it will need to be restarted for the changes to take effect. An example log from a
connection is as follows:

Apr 21 20:07:29 ubuntu2 nrpe[5569]: Handling the connection...
Apr 21 20:07:29 ubuntu2 nrpe[5569]: Host is asking for command
 'check_root_disk' to be run...
Apr 21 20:07:29 ubuntu2 nrpe[5569]: Running command:
 /opt/nagios/plugins/check_disk -w 20% -c 10% -p /
Apr 21 20:07:29 ubuntu2 nrpe[5569]: Command completed with return code
0
 and output: DISK OK - free space: / 7211 MB (90% inode=96%);|
 /=759MB;6717;7557;0;8397
Apr 21 20:07:29 ubuntu2 nrpe[5569]: Return Code: 0, Output: DISK OK -
free space: / 7211 MB (90% inode=96%);| /=759MB;6717;7557;0;8397

Another requirement for using NRPE is that the commands need to be specifi ed
using the full path to the plugin, and no macro substitution can take place.

Not being able to use any macro defi nitions requires more attention when writing
macros. It also requires that any change to the command is edited in the NRPE
confi guration on the remote machine, not in the Nagios confi gurations on the central
server. This introduces a very strict security model, but makes NRPE a bit harder
to maintain.

 In some cases, it is better to be able to pass arguments to NRPE from the Nagios
server and have NRPE put these into the command defi nition. Even though this
functionality is disabled for security reasons, it is possible to enable it. How NRPE
can be set up to accept parameters from the Nagios server is described in the NRPE
and Command Arguments section in this chapter.

Installing NRPE as a System Service
 The easiest way to get NRPE up and running is to add it to startup in a standalone
mode. In this case, it will handle listening on the specifi ed TCP port and changing
the user and group by itself.

To do this, simply run the NRPE binary with the following parameters:

/opt/nagios/bin/nrpe -c /etc/nagios/nrpe.cfg -d

You can also add NPRE to init.d fi le so that NPRE will start automatically at
system start. Usually, this fi le is located in /etc/init.d/nrpe or /etc/rc.d/init.
d/nrpe.

Monitoring Remote Host

[212]

A simple script that starts up and shuts down NRPE is as follows:

 #! /bin/sh

 case "$1" in
 start)
 echo -n "Starting NRPE daemon..."
 /opt/nagios/bin/nrpe -c /etc/nagios/nrpe.cfg -d
 echo " done."
 ;;
 stop)
 echo -n "Stopping NRPE daemon..."
 pkill -u nagios nrpe
 echo " done."
 ;;
 restart)
 $0 stop
 sleep 2
 $0 start
 ;;
 *)
 echo "Usage: $0 start|stop|restart"
 ;;
 esac

 exit 0

The next step is to set up a system to stop and start this service when changing to
appropriate runlevels. Depending on your system, the command to add nrpe as a
service can be one of the following:

 chkconfig --add nrpe ; chkconfig nrpe on
 update-rc.d nrpe defaults

NRPE can also be run either from inetd or xinetd. To do this, we fi rst need to add
the following line to the /etc/services fi le:

nrpe 5666/tcp

This will indicate that the TCP port 5666 maps to the service name, nrpe. This
specifi cation is used by both inetd and xinetd to map the service name to the actual
protocol and port defi nition.

If we're using inetd, we need to add the following service confi guration to the
 /etc/inetd.conf fi le—a sample defi nition is as follows:

Chapter 8

[213]

nrpe stream tcp nowait nagios /opt/nagios/bin/nrpe -c /etc/nagios/
nrpe.cfg -i

The entry above should be stored as a single line.
Next, we should restart inetd by running the following command:

/etc/init.d/inetd reload

 This will make inetd reload the service defi nition. The NRPE daemon should now
be accepting connections whenever one comes in on TCP port 5666.

Confi guring the NRPE daemon for xinetd is very similar. We will need to create a
fi le called /etc/xinetd.d/nrpe with the following contents:

service nrpe
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = nagios
 group = nagios
 server = /opt/nagios/bin/nrpe
 server_args = -c /etc/nagios/nrpe.cfg -i
 log_on_failure += USERID
 disable = no
}

Next, we need to reload xinetd by running:

/etc/init.d/xinetd reload

As with the previous reloading of inetd, the NRPE daemon should now accept
connections on port 5666.

When NRPE is working under inetd or xinetd, the server ignores the
server_address, server_port, nrpe_user and nrpe_group parameters from the
confi guration fi les. This is because inetd and xinetd handle these internally.

NRPE also ignores the allowed_hosts directive when running from any inetd fl avor.
In this, you can confi gure which hosts are allowed to access this particular service in
the inetd/xinetd fi le. For xinetd, this can be done by using the only_from statement
in the service defi nition. For inetd, this can be done using the tcpd wrapper
(http://linux.about.com/library/cmd/blcmdl8_tcpd.htm) to achieve this.

Monitoring Remote Host

[214]

Configuring Nagios for NRPE
 The next step is to set up Nagios to use NRPE for performing checks via a remote
machine. Using NRPE for performing checks requires creating one or more
commands that will use the check_nrpe plugin to send actual check requests to a
remote machine.

The syntax of the plugin is as follows:

check_nrpe -H <host> [-n] [-u] [-p <port>] [-t <timeout>]
 [-c <command>] [-a <arglist...>]

The following table describes all of the options accepted by the plugin. The items
required are marked in bold:

Option Description
-H, --host The host name or IP address of the machine to connect to; this

option must be specifi ed
-c, --command The name of the command that should be executed; the

command needs to be defi ned in the nrpe.cfg fi le on the
remote machine

-n, --no-ssl Disables SSL for communication
-p, --port Connects to the specifi ed port; defaults to 5666
-t, --timeout The number of seconds after which a connection will be

terminated; defaults to 10
-u, --unknown-timeout If a timeout occurs, will return an UNKNOWN state; if not

specifi ed then CRITICAL status is returned in case of timeout

The only two required attributes are -H and -c, which specify the host and the
command alias to run on that machine.

The next thing we should do is to make sure that the NRPE server on the remote
machine is working correctly. Assuming that check_swap is a valid command
defi ned in NRPE on a remote machine, we can now try to connect from the Nagios
server. The fi rst thing that's worth checking is whether calling check_nrpe
directly works:

$ /opt/nagios/plugins/check_nrpe -H 192.168.2.52 -c check_swap
SWAP OK - 100% free (431 MB out of 431 MB) |swap=431MB;86;43;0;431

In our example, 192.168.2.52 is the IP address of the remote computer. As
the connection was successful, NRPE passed the actual plugin output to the
standard output.

Chapter 8

[215]

After a successful check, we can now defi ne a command in the Nagios confi guration
that will perform a check over NRPE.

 define command
 {
 command_name check_swap_nrpe
 command_line $USER1$/check_nrpe –H "$HOSTADDRESS$"
 -c "check_swap"
 }

We can then use the check_swap_nrpe command in a service defi nition.

NRPE has a much lower overhead as compared to SSH. So in some cases, it would be
a good idea to use NRPE even for performing local checks.

 In case we are defi ning a service for a group of hosts, we can use the same trick
as those for checks over SSH to perform checks on a local machine-using the
plugins directly and checking all of the remaining machines using NRPE. This will
reduce the overhead related to monitoring the local machine, and will remove the
requirement to install NRPE on local host.

The following is a sample confi guration that defi nes a check for swap usage locally for
the computer on which it is defi ned, and over NRPE for all the remaining machines:

 define service
 {
 use generic-service
 host_name localhost
 service_description SWAP
 check_command check_swap
 normal_check_interval 15
 }

 define service
 {
 use generic-service
 host_name !localhost
 hostgroup_name linux-servers
 service_description SWAP
 check_command check_swap_nrpe
 normal_check_interval 30
 }

Monitoring Remote Host

[216]

NRPE and Command Arguments
 By default, NRPE is confi gured to run only the predefi ned commands, and it is not
possible to pass any arguments to the commands that will be run. In some cases, s for
example with a large number of partitions mounted on various servers, this is hard
to manage as changes to the command confi gurations need to be done at the remote
machine level, not at the central Nagios server level.

In such cases, it might be worth investigating an option included in NRPE to pass
arguments to commands. This option is disabled by default as it is considered to be
a large security concern. This is because is possible to send malicious arguments to a
check command and make it perform actions other than the ones it should be doing.
It is recommended that you keep the option disabled as this is a more secure option.
However, if lowering the level of security is not a concern, it is possible to enable this
functionality within the NRPE daemon. It allows easier management of NRPE and
Nagios confi guration.

The fi rst thing that needs to be done is to rebuild the NRPE daemon with this option
enabled. To do this, run the configure script again with the --enable-command-
args fl ag added. For the same invocation that was used previously to build NRPE,
the command would be:

sh configure \
 --sysconfdir=/etc/nagios \
 --libexecdir=/opt/nagios/plugins \
 --prefix=/opt/nagios \
 --localstatedir=/var/nagios \
 --with-nrpe-user=nagios \
 --with-nrpe-group=nagios \
 --with-nagios-user=nagios \
 --with-n agios-group=nagios \
 --enable-command-args \

 --enable-ssl

Of course, it is also necessary to rebuild the NRPE daemon and reinstall the binary. If
you are running NRPE as a standalone daemon, then you need to restart the daemon
after overwriting the binary.

Only the daemon on remote machine needs to be reconfi gured and recompiled.
It is not necessary to rebuild the NRPE client as it always supports the passing of
arguments to the NRPE daemon.

The next step is to add the dont_blame_nrpe option to the nrpe.cfg fi le and set it to
1. This option, despite its strange name, enables the functionality to use arguments
in the command defi nitions. When both NRPE is compiled with this option and the
option is enabled in the NRPE confi guration, this option is enabled.

Chapter 8

[217]

After that, it is possible to use $ARGn$ macros in the NRPE confi guration, similar
to how they are defi ned in Nagios. This works similarly to Nagios, where $ARG1$
indicates the fi rst argument, $ARG2$ the second one, and so on for up to 16
arguments. For example, a check command that checks the disk space on any
partition looks like this:

command[check_disk]=/opt/nagios/plugins/check_disk -w $ARG1$ -c $ARG2$
-p $ARG3$

This requires that warning and critical levels are passed during the check. The actual
path to the mount point, specifi ed as a third parameter, is essential.

Arguments are passed to check_nrpe by specifying the -a fl ag and passing all
required arguments after it, with each argument as separate parameter.

An example invocation of the check command as a standalone command would be
as follows:

$ /opt/nagios/plugins/check_nrpe -H 10.0.0.1 -c check_disk –a 10% 5%
/usr
DISK OK - free space: /usr 7209 MB (90% inode=96%)

 After making sure that the check works, we can now defi ne a command and a
corresponding service defi nition. The command will pass the arguments specifi ed in
the actual service defi nition:

 define command
 {
 command_name check_disk_nrpe
 command_line $USER1$/check_disk –H "$HOSTADDRESS$"
 -c "check_disk" –a $ARG1$ $ARG2$ $ARG3$
 }

And the actual service defi nition is as follows:

 define service
 {
 use generic-service
 host_name !localhost
 hostgroup_name linux-servers
 service_description Disk space on /usr
 check_command check_disk_nrpe!10%!5%!/usr
 }

This way, you can defi ne multiple partition checks without any modifi cations on the
remote machines.

Monitoring Remote Host

[218]

Of course, arguments can also be used for various plugins, for example, to be able to
confi gure the load, user, and process thresholds in a central location.

Passing arguments to NRPE is a very useful feature. But it comes at the price of a
lower security level. If the machines you deploy NRPE on do not require very strict
limitations, then it would be a good idea to enable it.

Having a strict source IP address policy in both the fi rewalls and the remote machine
is a good way of limiting security issues related to the passing of arguments down to
the actual check commands.

Other Approaches
This chapter focuses mainly on using SSH and NRPE for performing remote checks.
This is because Nagios is widely used to perform checks on remote machines.

There are also various alternate approaches that people take to invoke checks
remotely. A very popular approach is to use frameworks for working remotely. In
such cases, you might need to create some scripts or jobs that perform the checks, but
the entire network communication along with authentication and authorization are
already implemented in them.

 One such framework is the Software Testing Automation Framework (STAF;
http://staf.sourceforge.net/). This is a peer-to-peer based framework that
allows you to write code that performs specifi c jobs on remote machines. As the
system is not centralized, there is no critical resource that can make your entire
system malfunction if it is down.

STAF can be used from various languages, including Java, Perl, Python, Tcl, and
Ant. This means that pieces of the checks can be done in languages that best fi t a
specifi c scenario.

Another approach is to use check_http and web-based communication. This is a
very common scenario when doing a check for web applications. This way, you can
invoke a specifi c URL that will perform a check on the remote machine and provide
the results over the HTTP protocol.

In such a case, an application can have a URL that is accessible only from specifi c
IP addresses and returns diagnostic information about the website. This can mean
performing a test SQL query to the database and checking the fi le permissions and
available disk space. The application can also perform a sanity check of critical data
either in fi les or in a database.

Chapter 8

[219]

The web page can return a predefi ned string if all of the tests are passed correctly
and will return an error message otherwise. In this case, it is possible to perform the
check with the check_http plugin.

A typical scenario is when a check is done for both the string preset in the answer and
a page size range. For example, a check for the OK string combined with a page size
ranging from two to eight will check whether the result contains information about the
correct test and will also detect any additional messages preset in the output.

Troubleshooting NRPE
 Our NRPE confi guration should now be complete and working as expected.
However, in some cases, for example, if there is a fi rewall issue or an issue of invalid
confi guration, the NRPE based checks may not work correctly. There are some steps
that you can take to determine the root cause of the problem.

The fi rst thing that should be checked is whether Nagios server can connect to the
NRPE process on the remote machine. Assuming that we want to use NRPE on
192.168.2.1, we can check if NRPE accepts connections by using check_tcp from
the Nagios plugins. By default, NRPE uses port 5666, which we'll also use in the
following example, which shows how to check this:

$ /opt/nagios/plugins/check_tcp -H 192.168.2.1 -p 5666
TCP OK - 0.009 second response time on port 5666|time=0.008794s;;;0.00
0000;10.000000

If NRPE is not set up on the remote host, the plugin will return Connection
refused. If the connection could not be established, the result will be No route to
host. In these cases, you need to make sure that the NRPE server is working and
that, the traffi c that the TCP port NRPE is listening on is not blocked by the fi rewalls.

The next step is to try to run an invalid command and check the output from the
plugin. The following is an example that assumes that the dummycommand is not
defi ned in the NRPE confi guration on the remote machine:

$ /opt/nagios/plugins/check_nrpe -H 192.168.2.1 -c dummycommand
NRPE: Command 'dummycommand' not defined

If you received a CHECK_NRPE: Error - Could not complete SSL handshake error or
something similar, it means that NRPE is not confi gured to accept connections from
your machine—either via the allowed_hosts option in the NRPE confi guration, or
in the inetd confi guration.

Monitoring Remote Host

[220]

In order to check this, log on to the remote machine and search the system logs for
nrpe. For example, on most systems, this would be:

grep nrpe /var/log/syslog /var/log/messages
(...)
ubuntu1 nrpe[3023]: Host 192.168.2.13 is not allowed to talk to us!

This indicates that your Nagios server is not added to the list of allowed hosts
in the NRPE confi guration. Add it in the allowed_hosts option and restart the
NRPE process.

Another error message that could be returned by the check_nrpe command is
CHECK_NRPE: Received 0 bytes from daemon. Check the remote server logs for
error messages. This message usually means that you have passed arguments or
invalid characters in the command name and the NRPE server refused the request
because of these.

Looking at the remote server's logs will usually provide more detailed information:

grep nrpe /var/log/syslog /var/log/messages
(...)
ubuntu1 nrpe[3023]: Error: Request contained command arguments!
ubuntu1 nrpe[3023]: Client request was invalid, bailing out...

In this situation, you need to make sure that you enable arguments or change the
Nagios confi guration not to use arguments over NRPE.

Another possibility is that the check returns CHECK_NRPE: Socket timeout after
10 seconds or a similar message. In this case, the check command has not been
completed within the confi gured time. You may need to increase the command_
timeout in the NRPE confi guration.

Summary
Checking whether a service is available over a network can be done from a single
machine. In such cases, using a single dedicated machine to do all of these checks
would be a good idea as it also reduces the burden and load to be on just a single
computer on your network. In reality, this is not enough for a robust computer and
failure monitoring solution.

Chapter 8

[221]

In many cases, performing checks on machines other than the Nagios server is
a necessity. this is the case for the simplest tasks, such as making sure you have
enough storage space on a database server. It is also needed for more complex checks
such as monitoring the load of machines and being able to react to unbalanced loads
across machines. Nagios offers ways to do these types of checks and to set them up
in an easy manner. Depending on what the critical issues are for your network, the
choice is usually to either use SSH or NRPE to perform the checks on other machines.

The fi rst is easier to set up from a network and administrative perspective. All
that is needed is to put a set of plugins on the machine, create a public key based
authentication, and you are all set to go! The main advantage of this method is that it
uses the existing network protocol, which is usually running and enabled on all Unix
based machines. This way it is not necessary to confi gure fi rewalls to pass traffi c
related to Nagios checks.

Security and performance are the trade-offs. As SSH is a generic protocol, the
Nagios server can run any command on any of the machines it has access to. Many
institutions may consider using a generic service such as SSH. One way of limiting
this problem is to set up a restricted shell for the user that performs the checks,
which will make sure that only Nagios plugins are run.

Another problem with this approach is that SSH is a complex protocol, and the
overheads related to connecting to a remote machine and running a plugin are high.
The main problem occurs where one central Nagios server performs a large volume
of tests over SSH. The problem will not be signifi cant on remote computers, but the
central server will require more processing power to handle all of the checks in a
timely manner.

NRPE is an alternative to SSH. It is a daemon that is installed on remote computers
that allow the running of checks. The main advantage of this approach is that it
offers much better security. The administrator of the remote computer can confi gure
NRPE to accept only connections from certain IP addresses and to only allow the
execution of predefi ned commands. By default, it is not even possible to pass any
arguments to them. So there is very little chance of a security issue on account of
NRPE. Another advantage is that the NRPE protocol requires much less overheads,
and more frequent checks do not affect the central Nagios server too much.

There are some fl ip sides to NRPE. The fi rst one is that it needs to be set up on
all of the machines that will be monitored in a remote manner. In addition, all
confi guration for the checks is kept on the remote machines. In such cases, it
is much harder to maintain changes in the confi guration when monitoring
multiple computers.

Monitoring Remote Host

[222]

There are many other options for monitoring machines and the services on them.
They are not as popular, but can be also used to get the job done. There are various
agent-based systems that offer running commands remotely. They can be used to
create check commands that are executed on remote machines. Another approach
is to use existing protocols such as HTTP for deploying checks on remote host.
Common solutions, such as PHP, CGI, or various scripting languages, can be
leveraged to perform these kinds of tests. This is mainly useful if you already have a
stable web server that is also used for other purposes. All that is needed is to install
the scripts and confi gure the server to accept connections, either from all addresses
or just from specifi c ones.

Usually, it is quite obvious which solution should be used in which case. There may
be cases where it's easier to use existing SSH daemons. In other cases, security or
performance is more of an issue and NRPE is a better choice. In still other cases, a
custom solution will work best. How you should proceed is a matter of knowing the
best tool for a particular case.

In all cases, doing checks from remote computers is not as easy as doing it locally.
But, it is also not very diffi cult if you use the right tools!

SNMP
The previous chapter talked about different approaches to verifying remote
computers and the services they offer. This chapter covers another way of
monitoring remote machines and devices.

 Simple Network Management Protocol (SNMP) is a protocol that is designed to
monitor and manage various devices connected to a network. Its main purpose is
to create a standardized way of getting and setting parameters regardless of the
underlying hardware. The protocol allows the retrieval of information from a device,
setting options, and also covers the means for a device to notify other machines
about a failure.

SNMP is an industry standard, and all major hardware and software vendors
support it. All commonly-used operating systems can provide information using
SNMP. Microsoft offers SNMP for their Windows platform; all UNIX systems have
SNMP daemons that receive requests from the other machines.

 SNMP also offers a standardized, hierarchical way to group and access information,
called MIB (Management Information Base). This defi nes which attributes can be
accessed, and what data types are associated with them. This allows the creation
of attributes that all devices should use for providing information on standard
parameters such as network confi guration, usage, and potential threats. It also allows
custom parameters to be created so that they will not interfere with other
devices' data.

Most operating systems come with various utilities that allow communication with
other devices over SNMP. These utilities can be used to verify which attributes are
available on specifi c devices and what their values are at the moment.

SNMP

[224]

Introduction to SNMP
 SNMP is designed to be easy to implement and to provide a uniform way to access
information on various machines.

It is designed so that the footprint of the SNMP services is minimal. This allows
devices with a very limited size of storage and operating memory to still use the
protocol. SNMP uses the UDP protocol (User Datagram Protocol; see http://
en.wikipedia.org/wiki/User_Datagram_Protocol) , which requires much less
resources than TCP. It also uses one packet for sending a single request or response
operation, so the protocol itself is stateless.

Each machine that is managed by SNMP has an application that responds to requests
from this and other computers. Such an application is called an agent. For UNIX
systems, it is usually a daemon working in the background. Many devices with
embedded systems have SNMP support included in the system core. In all of these
cases, a device needs to listen for SNMP requests and respond accordingly.

 All agents are usually managed by one or more machines called the SNMP manager.
This is a computer that queries agents for data; it might also set their attributes.
Usually, this is an application running in the background that communicates over
SNMP and stores the information in some data storage.

Usually, SNMP uses UDP port 161 to communicate with the agent and port 162 for
sending information from the agent to the manager. In order to use SNMP, these
ports need to be passed correctly by all network routers, and should not be fi ltered
by the fi rewalls.

 There are two types of communication that are done by SNMP; the fi rst one is when
a manager sends requests to an agent. These can be get requests, in which case the
manager wants to retrieve information from an agent. If the information needs to be
modifi ed, a set request is sent out.

 Another type of communication is where an agent wants to notify a manager about
a problem. In such cases, an SNMP trap is sent out. An agent needs to know the
IP address of the manager to send the information out to. A manager needs to be
listening for SNMP traps, and should react on the issue.

The following is an illustration of possible SNMP communication types:

Chapter 9

[225]

SNMP
Agent

SNMP
Agent

SNMP
Agent

SNMP GET request
Requests information from agent

SNMP GET response
Returns requested information if available

SNMP SET request
Requests changing a value

SNMP
Manager

S
N

M
P

 T
R

AP
 n

ot
if

ic
at

io
n

In
fo

rm
s

m
a
n
a
g
e
r

a
b
o
u
t
p
ro

b
le

m
 (

n
o
 a

c
k
n
o
w

le
d
g
e
)

SNMP has several versions that an agent can communicate over. SNMPv1 was the
fi rst version of the protocol. This featured get, set, and trap operations. The standard
defi ned scalar data objects as well as tabular objects. It also featured the getnext
operation, which allows iterating over the tables of data objects.

 The security model related to SNMPv1 is relatively unsophisticated. A get, set, or
getnext request is authenticated based on the IP address of the manager and the
community string that it uses. All SNMP devices communicating over SNMPv1 use
the community string for verifying that the request—whether none, only get, or both
get and set operations–can be performed. By default, the private community string
allows both reading and writing information and the public community string only
allows reading them.

S NMP version 2 introduced improvements in terms of both performance and
security. Instead of using get and getnext, it had a getbulk operation. This allows
the retrieval of all entries in a table in a single operation. It also introduces an inform
packet—this is a trap that requires acknowledgement from the manager. This avoids
the problem where a single UDP packet gets lost, preventing a trap from being
received by the manager. This version also introduced a party-based security model,
which did not gain wide acceptance due to its complexity.

SNMP

[226]

T he most common version 2 implementation is SNMPv2c—Community-Based
Simple Network Management protocol 2. It uses the features of version 2 without
implementing the new security model, but using the community string mechanism
that was introduced in SNMPv1.

U ser-Based Network Management Protocol version 2, or SNMPv2u, is another
variant of SNMP version 2. This includes greater security than SNMPv2c, but does
not include all of security features originally developed for SNMPv2.

S NMP version 3 introduces an improved security model, including authentication,
privacy, and access control. This version introduced more security than was available
in SNMPv2, and one of the security frameworks uses the functionality
from SNMPv2u. This standard is now gaining more attention than SNMPv2,
mostly because it offers better security without the high level of complexity that
SNMPv2 introduced.

Most SNMP server implementations that come integrated with operating systems
support SNMPv1, SNMPv2c, and SNMPv3. Some devices only support SNMPv1
while others also offer SNMPv2. Packets from different SNMP versions are
incompatible, so a device using only SNMPv1 will not recognize a SNMPv2c packet.

In many cases, devices that are used across your network will offer a different subset
of versions that they support. There are two ways to work in such an environment.

T he fi rst approach is to use a proxy agent. Some SNMP management software uses
SNMPv3, and devices that do not support this version will need to have the packets
translated. In such cases, all requests from the manager are received by the proxy
agent; this translates and passes them to the actual agent, and sends the results back
to the manager. The proxy agent receives traps from the actual agent. It then passes
them to the manager as a trap or translates the packet using a newer SNMP version.
A proxy agent is usually an application on a computer or a physical device.

Often, SNMP managers allow the confi guration of which SNMP version should be
used for specifi c devices.

Data Objects
S NMP uses OIDs (Object Identifi ers; see http://en.wikipedia.org/wiki/
Object_identifier) to identify the data objects that it refers to. OIDs defi ne a
unique object for a specifi ed SNMP agent. They are identifi ed using a hierarchical
defi nition, similar to how domains work on the Internet.

Chapter 9

[227]

Object identifi ers are a series of numbers separated by periods. Each number
represents a part of the tree. Often, the fi rst number in the series is also preceded by
a period to indicate that this is an OID—this is not necessary, though. An example of
an OID is .1.3.6.1.2.1.1.5.0, which maps to the system name of a machine.

As it is very hard to memorize, read and compare OIDs written as a series of
numbers, there is a standard for naming and describing the MIB tree.

The standard is called MIB (Management Information Base; see
http://en.wikipedia.org/wiki/Management_Information_Base), and
it defi nes how various parameters are defi ned—how they are named, as well as what
types of values these objects might return. Each MIB defi nition is a text fi le written
in a subset of ASN.1 notation (http://en.wikipedia.org/wiki/ASN.1). A fi le can
describe a small or large subset of the MIB trees.

Currently, the standard is MIB SMIv2, and it defi nes all commonly-used attributes
along with additional information that can be used by visualization applications.

M IB fi les describe fi elds that can be used in SNMP. They defi ne parent nodes in the
hierarchy, the numeric identifi er, and the type of data that this fi eld is associated
with. SNMP uses the following basic data types:

 String—a string, written as bytes, that can have 0 to 65535 bytes
Integer and Integer32—a signed 32 bit integer value
Counters32, Counter64—non-negative integers that increase, and are reset to
0 after they reach maximum value
Gauges—non-negative integers that can increase and decrease within a
defi ned minimum-maximum range
Time tick—defi nes a time span, where the value of 100 represents one second
IP address—represents an address from a protocol family; SNMPv1 only
supports IPv4

 In many cases, a fi eld is returned as an enumeration type integer. This means that
some predefi ned numbers represent several predefi ned values. A good example is
the ifType fi eld when defi ning network interfaces—it specifi es the type of
network interface. Some examples are 23 for a PPP (Point-to-Point Protocol; see
http://en.wikipedia.org/wiki/Point-to-Point_Protocol) connection or 6 for
Ethernet interfaces.

•

•

•

•

•

•

SNMP

[228]

A n example OID is .1.3.6.1.2.1.1.5.0. The following is a table describing each
element, both as string and as corresponding numbers:

Identifi er Description
1 iso—iso standard tree
3 org—Organizations; this node is a placeholder for all national and

international organizations
6 dod—Department of Defense; this is the node for U.S. Department

of Defense
1 internet—Subnode for the Internet; since originally Internet was a project for

U.S. military defense, its placeholder is under dod subtree
2 mgmt—Systems management node

1 mib-2—Management Information Base, version 2 root node

1 system—Operating system information

5 sysName—Name of this machine; usually a fully qualifi ed domain name

0 Index of the elements; in this case it is always 0

The string representation of this OID is iso.org.dod.internet.mgmt.mib-
2.system.sysName.0. Often, it is also referred to as SNMPv2-MIB::sysName.0.

The .1.3.6.1.2.1 part of the OID defi nes the root elements for all MIB-2
standardized parameters. All of the standard SNMP parameters that various devices
use are under this OID node or its descendants. This node is also called the
SNMPv2-MIB namespace; hence, the SNMPv2-MIB::sysName.0 OID also maps to
the same object.

The MIB tree has a few major nodes that are the base for many other subtrees that
might be signifi cant to you under various circumstances, which are as follows:

.1.3.6.1.2.1 stands for iso.org.dod.internet.mgmt.mib-2. This is
the base for all of the attributes that are available on the majority of
SNMP-aware devices.
.1.3.6.1.4.1 stands for iso.org.dod.internet.private.enterprise.
This is a root node for all corporations and companies that use private
objects; this is used by companies such as Microsoft, Motorola and many
other hardware and software vendors.
.2.16.840.1.113883 stands for joint-iso-itu-t.country.
us.organization.hl7. This is a root node for Health Level 7, and is used
mainly in health care and public health informatics.

•

•

•

Chapter 9

[229]

The most important node is .1.3.6.1.2.1, which is used by all SNMP-aware
devices to report information. This part of the MIB tree is the root node for the
majority of standard objects. It is also mandatory for all SNMP-enabled devices
to provide at least the basic part of information in this subtree. For example,
information such as contact information, location, system name, and the type should
be provided by all SNMP-aware devices.

 SNMP can be used to retrieve different kinds of information. This information is
usually grouped into various categories. All categories also have corresponding
aliases they are usually referenced with, to avoid putting the entire structure in every
OID defi nition or MIB name. All applications that offer communication over SNMP
allow the specifi cation of attributes using both OID and MIB names. Let's go over a
few of the most important sections of the MIB tree.

Information in IF-MIB, IP-MIB, IPv6-MIB, RFC1213-MIB, IP-FORWARD-MIB, TCP-MIB,
and UDP-MIB describe network connectivity—interfaces, IP confi guration, routing,
forwarding, and the TCP and UDP protocols. They allow the querying of the current
confi guration as well as currently active and listening sockets.

Data contained in SNMPv2-MIB and HOST-RESOURCES-MIB describes system
information and current parameters. This can include information on disk storage,
current processes, installed applications, and the hardware that the computer is
running on.

Working with SNMP and MIB
 Different operating systems can come with different SNMP applications. Many
hardware vendors also offer additional software that manages multiple machines
using SNMP—for example, HP OpenView or Sun Management Center. For this
section and the following ones, the Net-SNMP package (see http://net-snmp.
sourceforge.net/) will be used. This package is included in all Linux distributions
and works with almost all UNIX operating systems.

In order to install this package on Ubuntu Linux, we need to run the
following command:

apt-get install snmp

For yum-based Linux distributions, the package is called net-snmp and the command
to install it is as follows:

yum install net-snmp

SNMP

[230]

The Net-SNMP project homepage also offers binaries for several platforms, including
HP-UX and Fedora Linux. Fedora packages should also work on Red Hat Enterprise
Linux systems.

It is also possible to build everything from the source for various UNIX operating
systems such as AIX, HP-UX, and Solaris. Exact instructions are provided on the
project page.

After a successful installation, we should be able to run any SNMP-related
command, such as snmpget, and check the Net-SNMP version by doing the
following:

root@ubuntu:~# snmpget -V
NET-SNMP version: 5.3.1

 Assuming we do have a host with the SNMP agent set up, and it is accepting the
SNMP protocol version 1, we can now try to communicate with it and query a
few parameters:

root@ubuntu:~# snmpget -v 1 -c public 192.168.2.2 \
 iso.org.dod.internet.mgmt.mib-2.system.sysName.0
SNMPv2-MIB::sysName.0 = STRING: WAG354G

As you can see, the device returned that the system name is WAG354G. This is
actually a Linksys/Cisco router and the only way to access its information is over the
web interface or SNMP.

The Net-SNMP package comes with a couple of very useful commands that can be
used to check current values, as well as perform a dump of a part or the whole MIB
tree. These vary from simple tools for querying a single attribute to very complex
ones that print out a df-like report of partitions on a remote system. There are also
commands for displaying tables and for setting parameters remotely.

Throughout this section and the next ones, we'll mainly use SNMP version 1, as this
is supported by almost all SNMP-enabled devices. When using SNMP in production,
it's better to check which devices accept the SNMP versions, and use the most recent
one a device handles correctly.

The fi rst command that's worth getting familiar with is snmpget. This allows the
querying of single or multiple attributes over SNMP.

The syntax of the command is as follows:

snmpget [options] IP-address OID [OID] ...

Chapter 9

[231]

 All of the Net-SNMP commands accept a huge number of parameters. The following
parameters are the ones we will be using throughout this chapter, and they are
worth knowing:

Option Description
-h Provides help
-V Prints the Net-SNMP version
-c Specifi es the community name to use
-v Specifi es the SNMP version to be used; should be one of 1, 2c or 3
-r Specifi es the number of retries
-t Timeout in seconds
-O Output options; should be one or more of the following:

n – print OIDs as numerical values without expanding them from MIB
e – print enum and OID fi elds as numbers instead of string values
v – print values only instead of name = value format
f – print full OID names; disallows shortcuts such as SNMPv2-MIB

The -O option allows the retrieval of values without having to apply MIB shortcuts;
hence, being able to see the entire branch. It also allows output to be changed
so that only values along with data types are printed out, instead of the object
names themselves.

An example of this command is as follows:

snmpget –O ef -v 1 -c public rtr SNMPv2-MIB::sysObjectID.0
.iso.org.dod.internet.mgmt.mib-2.system.sysObjectID.0 =
OID: .iso.org.dod.internet.private.enterprises.ucdavis.
ucdSnmpAgent.linux

All of the options above can also be used with other Net-SNMP commands.

Net-SNMP also offers a command to iterate through the entire MIB tree, or only a
part of it. The snmpwalk command accepts the same options as shown earlier. Most
versions of Net-SNMP's snmpwalk command do not require the passing of any OID to
work. For older versions, in order to list the entire tree ,.1 can be specifi ed as the OID.

The following command will list the entire MIB tree of an SNMPv1 agent:

root@ubuntu:~# snmpwalk -v 1 -c public 192.168.2.2

Depending on the underlying operating system and the SNMP agent itself, the actual
data may be different. Please note that if the device is not on a local network, then
this operation might take a very long time to complete.

SNMP

[232]

In order to retrieve only a part of the MIB tree, simply pass the prefi x of the tree you
are interested in. For example:

root@ubuntu:~# snmpwalk -v 1 -c public 192.168.2.2 1.3.6.1.2.1.1

The command above will limit the query to iso.org.dod.internet.mgmt.mib-
2.system node and its children. It will also complete much faster than querying the
entire tree.

Walking over a part of a tree is mainly useful when trying to check the objects
that are available on a remote device that does not respond quickly to SNMP
requests—either because of network lag or because of the computations required for
some objects. It is also commonly used to fi nd out which values are available in a
specifi ed part of the MIB tree.

Another useful utility is the snmptable command. It allows the listing of various
SNMP tables, and shows them in a human readable form. The syntax is as follows:

snmptable [options] IP-address OIDprefix

 For example, to list all TCP/IP connections, the following command can be used:

root@:~# snmptable -v 1 -c public 192.168.2.2 tcpConnTable
SNMP table: TCP-MIB::tcpConnTable

connState connLocalAddress connLocalPort connRemAddress connRemPort
 listen 0.0.0.0 23 0.0.0.0 0
 listen 0.0.0.0 80 0.0.0.0 0
 listen 0.0.0.0 199 0.0.0.0 0

Net-SNMP also allows the setting of new object values that can be used to
reconfi gure various devices. The snmpset command can be used to perform this. The
syntax is as follows:

snmpset [options] IP-address OID type value [OID type value] ...

This command accepts all of the same standard options as the snmpget command.
A single command invocation can be used to set more than one parameter, by
specifying more than one set of OIDs to be set. Each set operation needs to specify
the new value along with the data type it should be set to.

The value type can be one of the following:

Type Description
i Integer
u Unsigned integer

Chapter 9

[233]

Type Description
s String
x Hex string – each letter is specifi ed as 2 hex digits
d Decimal string – each letter is specifi ed as a 1-2 digit
n NULL object
o OID – for objects that accept object
t Timeticks
a IP address
B Series of bits

The most common types are String, Integer, and OID. The fi rst two require the
passing of either a number or a text that the object's value should be set to. Setting an
OID type of object requires either providing a full OID identifi er or any string that
can be matched by the MIB defi nitions.

An example to set a system's contact name and host name is as follows:

root@ubuntu:~# snmpset -v 2c -c private 192.168.2.2 \
 SNMPv2-MIB::sysContact.0 s admin@net.home \

 SNMPv2-MIB::sysName.0 s RTR

SNMPv2-MIB::sysContact.0 = STRING: admin@net.home
SNMPv2-MIB::sysName.0 = STRING: RTR

Some attributes cannot be set via SNMP. For example, it is not possible to modify
objects that are used for the monitoring system. These unsettable attributes usually
include the IP address confi guration, counters, or diagnostic information, for
example, TCP/UDP connection tables, process lists, installed applications, and
performance counters. Many devices tend to support command line administration
over SNMP, and in this case, the parameters might be read-only.

 MIB defi nitions specify which attributes are explicitly read-only. Using a graphical
tool to fi nd out which attributes can be modifi ed will ease automatic device
confi guration over the SNMP protocol.

Graphical Tools
 Using SNMP and the MIB tree is not a simple task. Many people, not very familiar
with command line tools and the large amounts of information returned, might feel
a bit overwhelmed by it. This is where graphical tools come in handy. And there are
lots of freely-available tools that can visualize SNMP. We will discuss only a few
of them.

SNMP

[234]

The fi rst tool is called mbrowse (see http://www.kill-9.org/mbrowse/). It is a
graphical tool for browsing the MIB tree, querying attributes, and running a complete
or partial walk through the MIB tree. This tool uses the SNMPv1 and the SNMPv2c
protocols. It uses the Net-SNMP libraries and shares the same MIB defi nitions.

The following is a screenshot of the tool with a result from a walk and an expanded
TCP tree:

 Another interesting tool is TkIned (Tcl/tK based Interactive Network EDitor) from
the Scotty package (https://trac.eecs.iu-bremen.de/projects/scotty/). This
is a graphical tool that uses Tk for the graphical interface and Scotty for the SNMP
protocol. It allows browsing of the MIB tree, the monitoring of hosts over SNMP, and
the visualization of your network by clicking on the layout.

 This tool also has another very interesting feature. Based on one or more IP network
addresses, it can automatically detect your networks and try to fi nd hosts that
respond to SNMP requests. It uses the default public/private community pair, and
communicates over the SNMPv1 and SNMPv2c protocols. This allows the detection
of various operating systems and devices that are confi gured to respond to these
communities, which are still the default ones in many cases.

The tool can be confi gured to monitor various parameters such as disk usage or
system load over SNMP. The results are graphed and updated in real time. This can
serve as a backup system to verify up-to-date values for various attributes. Once
the SNMP or ICMP checks are set up, they will be done periodically until they are
removed from the map.

Chapter 9

[235]

The following is a screenshot of the tool after an IP-discover option has been run,
where the tool has been confi gured to monitor the disk and memory usage of a
Windows machine.

The layout of the machines on the chart can be freely edited. There is also a wide set
of icons that can be associated with particular hosts.

SNMP

[236]

Setting up an SNMP Agent
 The previous section talked about how to communicate with SNMP agents. If you
have a network device such as a router or WiFi, WiMax, or DSL gateway, most
probably it will also come with a built-in SNMP agent.

The next step is to set up the SNMP agent on one or more computers so that we
can use SNMP to monitor servers or workstations. In this way, a majority of the
networked equipment will allow monitoring from a single machine using the
SNMP protocol.

Let's start with various UNIX boxes. The SNMP agent is a part of Net-SNMP, and
several distributions come with the command line tools, libraries, and the SNMP
agent, usually as optional packages.

In our case, we will install the SNMP agent on Ubuntu Linux. We will run the
following command:

apt-get install snmpd

This will cause the SNMP daemon which is a part of Net-SNMP, to be installed. By
default, Ubuntu Linux SNMP agent only accepts connections on 127.0.0.1. This is
for security reasons—in many cases, an SNMP agent is used mainly by tools such as
MRTG to gather usage statistics.

To change it, we will need to either specify the IP address that SNMP agent
should listen on in the /etc/default/snmpd fi le, SNMPDOPTS variable, or remove
it completely.

If the SNMP agent should listen on all available IP addresses, then the line should
look similar to the following example:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid'

Changing this option requires restarting the SNMP agent by invoking the /etc/
init.d/snmpd restart command.

 After a successful installation, the SNMP agent should be up and running, and
making a walk over the entire tree should produce some output.

To test the SNMP agent, simply launch the following command on the same
machine, assuming through the Net-SNMP command line tools are installed:

snmpwalk -v 1 -c public 127.0.0.1

Chapter 9

[237]

The agent that we have just installed supports the SNMPv1, SNMPv2c, and SNMPv3
protocol versions. It also features an extensive security model that you can confi gure
to provide a more secure setup.

 Net-SNMP agent allows you to defi ne one or more OIDs along with all subnodes
that can be retrieved, by specifi c security groups. These groups can be mapped to
specifi c communities that originate from all or specifi c IP addresses. Security groups
are also mapped using SNMP versions used by the remote machine.

A sample confi guration that allows only read-only access from all of the hosts is
as follows:

com2sec readonly default public
group readonlyGroup v1 readonly
group readonlyGroup v2c readonly
group readonlyGroup usm readonly
view all included .1 80
access readonlyGroup "" any noauth exact all none none
syslocation Home
syscontact Administrator <admin@yourcompany.com>

The fi rst line defi nes a mapping between the community and a security group
readonly. The next lines assign readonlyGroup access rights to this group. Then it is
granted access to read all objects from the .1 OID node and its children. The last two
lines specify the system administrator and the location where the machines
are stored.

For SNMPv3 model, it is also possible to specify one or more users by calling the
snmpusm command (http://linux.die.net/man/1/snmpusm). It allows real-time
confi guration of the user list for local or remote SNMPv3 agents.

SNMP can also be set up on all modern Microsoft Windows operating systems.
Similar to UNIX systems, it is necessary to install an SNMP agent. In order to do this
on Windows XP and Windows 2003 Server, we fi rst need to go to the Control Panel
fi rst. Next, we need to select the Add or Remove Programs applet and select
the Add/Remove Windows Components option. The following window will
be displayed:

SNMP

[238]

Chapter 9

[239]

Next, we need to select Management and Monitoring Tools, as shown in the
screenshot above. We can also select the Details button and choose Simple Network
Management Protocol. The WMI SNMP Provider allows the retrieval of the SNMP
parameters over WMI and can be left unchecked if you do not need it.

 Windows SNMP agent exports information about the system in a similar way to
other platforms. You can use it to query the underlying hardware, the operating
system version, and the network confi guration along with the currently-active
connections. It is also possible to list active processes and monitor the systems load.
The Windows SNMP agent also exports details of all of the installed applications
along with security patches from Microsoft. This mechanism can be used to monitor
whether all critical system patches are installed or monitor compliance with
software licenses.

After a successful installation, we can go to the Administrative Tools folder and run
the Services applet. When selecting SNMP Service and choosing Properties, the
following service properties window, along with the SNMP confi guration,
is displayed:

SNMP

[240]

The window has three additional tabs—Agent, Traps, and Security. The Agent tab
allows you to confi gure which parts are exported over SNMP, and offers the setting
up of contact and location information.

 The Security tab allows you to confi gure how SNMP information from this host can
be accessed. The Windows SNMP agent offers support for SNMPv1 and
SNMPv2c, so the security model is based on a community string and IP addresses
for authentication.

The agent can either accept SNMP queries from all hosts or only from the specifi c
hosts listed in the bottom part of the tab. There is also the possibility of specifying
one or more readable and writable communities. By default, only queries on public
community string are accepted and allow read-only access.

The Traps tab allows confi guration of Windows to send or forward traps to specifi c
IP addresses, and indicate which SNMP community is to be used for communication.

Chapter 9

[241]

Using SNMP from Nagios
 Now that we are able to query information from Windows and UNIX boxes, it would
be good to know how to integrate SNMP checks with Nagios. The Nagios plugins
package comes with a plugin called check_snmp for checking SNMP parameters and
validating their value. The plugin uses the snmpget and snmpgetnext commands
from Net-SNMP, and it does not work without these commands.

The following is the syntax of the command:

check_snmp -H <ip_address> -o <OID> [-w warn_range] [-c crit_range]
 [-C community] [-s string] [-r regex] [-R regexi]
 [-l label] [-u units] [-d delimiter] [-D output-delimiter]
 [-t timeout] [-e retries] [-p port-number]
 [-m miblist] [-P snmp version] [-L seclevel] [-U secname]
 [-a authproto] [-A authpasswd] [-X privpasswd]

The following table describes the commonly-used options accepted by the plugin.
Options that are required are marked in bold:

Option Description
-H, --hostname Host name or IP address of the machine to connect to; this option

must be specifi ed
-o, --oid OID to get from the remote machine; can be specifi ed either as dot-

separated numbers or as a name; multiple elements can be specifi ed
and need to be separated with commas or spaces

-w Specifi ed the min:max range of values outside of which a warning
state should be returned; for integer results only

-c Specifi ed the min:max range of values outside of which a critical
state should be returned; for integer results only

-P, --protocol Specifi es the SNMP protocol version; accepted values are 1, 2c or 3
-C, --community Specifi es the community string to be used; for SNMPv1 and

SNMPv2c this defaults to public
-s, --string Returns a critical state unless the result is an exact match of value

specifi ed in this parameter
-r, --regex Returns a critical state if the result does not match the specifi ed

regular expression; is case sensitive
-R, --eregi Returns a critical state if the result does not match the specifi ed

regular expression; is case insensitive
-t, --timeout Specifi es the period in seconds after which it is assumed that no

response has been received and the operation times out

SNMP

[242]

Option Description
-e, --retries Specifi es the number of retries that should be performed if no answer

is received
-n, --next Uses the getnext request instead of get to retrieve the next

attribute after the specifi ed one
-d, --delimiter Specifi es the delimiter which should be used to match values in the

output from the Net-SNMP commands; defaults to an
equal sign: =

-D, --output-
delimiter

Specifi es the character used to separate output if multiple OIDs are
provided

Depending on which exact fl ags are passed, the plugin behavior is different. In all
cases, the plugin will return critical if the SNMP agent could not be contacted,
or if the specifi ed OID does not exist. If none of the fl ags -s, -r/-R, -w, and -c are
specifi ed, the plugin will return OK as long as the OID is not retrieved. Specifying -s
will cause the check to fail if the value returned by the SNMP get request is different
from the value supplied to this option. It is worth noting that this option uses an
exact match, not a substring.

An example would be to make sure that the exact location is specifi ed in an SNMP
agent. This can be checked by the following command:

root@ubuntu:~# /opt/nagios/plugins/check_snmp -H 10.0.0.1 -P 2c \
 -o SNMPv2-MIB::sysLocation.0 -s "Miami Branch"
SNMP OK - VMware | SNMPv2-MIB::sysLocation.0=Miami Branch

Matching a part of text can be done with the -r or -R option. The fi rst one is a
case-sensitive match. The latter option ignores the case while matching the resulting
value. Similarly, when making sure that the contact information fi eld contains email
information, the following command can be used:

root@ubuntu:~# /opt/nagios/plugins/check_snmp -H 10.0.0.1 -P 2c \
 -o SNMPv2-MIB::sysContact.0 -r "@"
SNMP OK – root@company.com | SNMPv2-MIB::sysContact.0=root@company.com

 It is also possible to match the specifi c value ranger for integer results. Checks work
in such a way that the acceptable ranges for specifi c values are specifi ed. If the result
is outside of a specifi ed range, a warning or critical state is returned. It is possible
to specify separate ranges for critical and warning checks.

Typical usage can be to monitor system load or the number of processes running on
a specifi c host.

Chapter 9

[243]

The following is an example of how to check if the number of system processes is
less than 20:

root@ubuntu:~# /opt/nagios/plugins/check_snmp -H 10.0.0.1 -P 2c \
 -o HOST-RESOURCES-MIB::hrSystemProcesses.0 -w 0:20 -c 0:30
SNMP CRITICAL - *33* | HOST-RESOURCES-MIB::hrSystemProcesses.0=33

The check will return CRITICAL status if the number of processes is 30 or more.
A WARNING status will be returned if the number of processes is 20 or more. If the
number is less than 20, an OK status will be returned.

In all cases, it is advised that you fi rst use the snmpwalk command and check which
objects can be retrieved from a specifi c agent.

Nagios also comes with SNMP plugins written in Perl that allow the checking of
network interfaces and their statuses. These plugins require the installation of the Perl
Net::SNMP package. For Ubuntu Linux, the package name is libnet-snmp-perl.

The syntax of the plugins is as follows:

check_ifstatus -H hostname [-v version] [-C community]
check_ifoperstatus -H hostname [-v version] [-C community]
 [-k index] [-d name]

The following table describes the options accepted by the plugins. Required options
are marked in bold:

Option Description
-H, --hostname The host name or the IP address of the machine to connect to; this

option must be specifi ed
-v, --snmp_version Specifi es the SNMP protocol version to be used; acceptable values

are 1 and 2c
-C, --community Specifi es the SNMP community string to be used
-k, --key Specifi es the index of the network interface to be checked

(ifIndex fi eld)
-d, --descr Specifi es the regular expression to match the interface description

(ifDescr fi eld) against

 The check_ifstatus plugin simply checks if the status of all of the interfaces is up,
or if they are administratively down. If at least one interface is set up correctly, even
if all other interfaces are down, a critical status is reported.

SNMP

[244]

 The check_ifoperstatus plugin allows you to check the status of a specifi c network
interface. It is possible to specify either the index of the interface or an expression to
match the device name against. An example to check the eth1 interface is as follows:

root@ubuntu:~# /opt/nagios/plugins/check_ifoperstatus -H 10.0.0.1 \
 -d eth1
OK: Interface eth1 (index 3) is up.

As we also checked the index that eth1 is associated with, we can now use the -k
option to check the interface status:

root@ubuntu:~# /opt/nagios/plugins/check_ifoperstatus -H 10.0.0.1 –k 3
OK: Interface eth1 (index 3) is up.

The main difference is that by using the -d fl ag, you make sure that changes to the
indexes of the network interfaces shifting your confi guration are not affected. On
the ther hand, using the -k fl ag is faster. If you are sure that your interfaces will not
change, it's better to use -k; otherwise -d should be used.

The next step is to confi gure the Nagios commands and services for the SNMP usage.
We will defi ne a command and a corresponding service. We will also show how
custom variables can be used to standardize command defi nitions.

The following is a generic command used to query SNMP:

 define command
 {
 command_name check_snmp
 command_line $USER1$/check_snmp –P 1 –H $HOSTADDRESS$
 -o $ARG1$ $ARG2$
 }

Using the Nagios 3 functionality, we can also defi ne the _SNMPVERSION and _
SNMPCOMMUNITY parameters in the host object for all of the devices that are
SNMP-aware, and use them in the command:

 define host
 {
 use generic-host
 host_name linuxbox01
 address 10.0.2.1
 _SNMPVERSION 2c
 _SNMPCOMMUNITY public
 }

Chapter 9

[245]

 define command
 {
 command_name check_snmp
 command_line $USER1$/check_snmp –H $HOSTADDRESS$ -o $ARG1$
 –P $_HOSTSNMPVERSION$ -C $_HOSTSNMPCOMMUNITY$ $ARG2$
 }

Next, we should defi ne one or more services that will communicate over SNMP.

Let's check for a number of processes and add some constraints that we want to be
monitored:

 define service
 {
 use generic-service
 hostgroup_name snmp-aware
 service_description Processes
 check_command check_snmp!HOST-RESOURCES-
 MIB::hrSystemProcesses.0!-w 0:250 –c 0:500
 }

Please note that the check_command statement above needs to be specifi ed on a single
line. The above check will monitor the number of processes running on a system.

It's worth mentioning that for Microsoft Windows systems the number of processes
that should trigger a warning and critical state should be much lower than shown in
the above example.

Receiving Traps
 SNMP traps work in opposite ways to get and set requests. That is, the agent sends
a message, as a UDP packet, to the SNMP manager when a problem occurs. For
example, a link down or system crash message can be sent out to the manager so
that administrators are alerted instantly. Traps differ across versions of the SNMP
protocols. For SNMPv1, they are called traps, and are messages that do not require
any confi rmation by the manager. For SNMPv2, they are called informs and require
the manager to acknowledge that it has received the inform message.

In order to receive traps or informs, the SNMP software needs to accept incoming
connections on UDP port 162, which is the standard port for sending and receiving
SNMP trap/inform packets. In some SNMP management software, trap notifi cations
are handled within separate applications, while in others, they are integrated into an
entire SNMP manager back-end.

SNMP

[246]

For a Net-SNMP trap, the daemon is a part of the SNMP daemons, but is a separate
binary, called snmptrapd, which, by default, is not started. To change this, we will
need to modify the /etc/default/snmpd fi le and change the TRAPDRUN variable to
yes, as shown here:

TRAPDRUN=yes

Changing this option requires restarting the SNMP agent by invoking the /etc/
init.d/snmpd restart command.

On Ubuntu Linux, the trap listening daemon keeps its confi guration fi le in /etc/
snmp/snmptrapd.conf. For other systems, it may be in a different location.

The daemon can log specifi ed SNMP traps/informs. It can be confi gured to run
predefi ned applications or to forward all or specifi c packets to other managers.

A sample confi guration that logs all incoming traps but only if they originate from
the SNMPv1 and SNMPv2c private community would look like this:

authCommunity log,execute,net private

This option enables the logging of traps from the private community originating
from any address. It also allows the execution of handler scripts and forwarding of
them. But this requires additional confi guration directives.

Each change in the snmptrapd.conf fi le requires a restart of the snmpd service.

Usually, traps will be received from a device such as a network router or another
computer from which we want to receive traps. We will need two machines with
Net-SNMP installed—one for sending the trap and another that will process it. The
one processing it should be the one where Nagios is installed, so we can pass it on
later. For the purposes of this section, we will use another computer and defi ne a test
MIB defi nition.

We need to create an MIB fi le called NAGIOS-TRAP-TEST-MIB.txt that will defi ne
the types of traps and their OIDs. On Ubuntu, the fi le should be put in /usr/share/
snmp/mibs; for other platforms, it should be in the same location as the
SNMPv2-SMI.txt fi le.

 The contents of the fi le should be as follows:

NAGIOS-TRAP-TEST-MIB DEFINITIONS ::= BEGIN
 IMPORTS enterprises FROM SNMPv2-SMI;

 nagiostests OBJECT IDENTIFIER ::= { enterprises 0 }
 nagiostraps OBJECT IDENTIFIER ::= { nagiostests 1 }
 nagiosnotifs OBJECT IDENTIFIER ::= { nagiostests 2 }

Chapter 9

[247]

 nagiosTrap TRAP-TYPE
 ENTERPRISE nagiostraps
 VARIABLES { sysLocation }
 DESCRIPTION "SNMPv1 notification"
 ::= 1

 nagiosNotif NOTIFICATION-TYPE
 OBJECTS { sysLocation }
 STATUS current
 DESCRIPTION "SNMPv2c notification"
 ::= { nagiosnotifs 2 }
 END

This contains defi nitions for both the SNMPv1 trap called nagiosTrap and the
inform packet for SNMPv2c called nagiosNotif. The fi le should be copied to all of
machines that will either send or receive these trap/inform packets. In this example,
we are using a subtree of the enterprises branch in SNMPv2-MIB, but this should not
be used in any production environment as this is a reserved part of the MIB tree.

In order to send such a trap as an SNMPv1 packet, we need to invoke the following
command on the machine that will send the traps, replacing the IP address with the
actual address of the machine that is running the snmptrapd process.

root@ubuntu2:~# snmptrap -v 1 -c private 192.168.2.51 \
 NAGIOS-TRAP-TEST-MIB::nagiostraps "" 6 nagiosTrap "" \
 SNMPv2-MIB::sysLocation.0 s "Server Room"

Sending an SNMPv2c notifi cation will look like this:

root@ubuntu2:~# snmptrap -v 2c -c private 192.168.2.51 "" \
 NAGIOS-TRAP-TEST-MIB::nagiosNotif \
 SNMPv2-MIB::sysLocation.0 s "Server Room"

Please note that, in both the cases, there is no confi rmation that the packet was
received. In order to determine this, we need to check the system logs—usually the
/var/log/syslog or /var/log/messages fi les. The following command should
return log entries related to traps:

root@ubuntu:~# grep TRAP /var/log/syslog /var/log/messages

Now that we know how to send traps, we should take care to handle them properly.
The fi rst thing that needs to be done is to add scripts as event handlers for the traps
that we previously defi ned. We need to add these handlers on the machine that has
the Nagios daemon running.

SNMP

[248]

 To do this, add the following lines to snmptrapd.conf, and restart the snmpd service:

traphandle NAGIOS-TRAP-TEST-MIB::nagiostraps /opt/nagios/bin/
passMessage
traphandle NAGIOS-TRAP-TEST-MIB::nagiosnotifs /opt/nagios/bin/
passMessage

We now need to create the actual /opt/nagios/bin/passMessage script that will
forward information about the traps to Nagios:

 #!/bin/sh

 CMD=/var/nagios/rw/nagios.cmd

 read ORIGHOSTNAME
 read ORIGIP
 # parse IP address
 IPADDR='echo "$ORIGIP" | sed 's,^...: \[,,;s,\]:.*$,,''
 HOST=""

 # map IP address to host and service definition
 case $IPADDR in
 192.168.2.52)
 HOST=ubuntu2
 SVC=TrapTest
 ;;
 esac

 if ["x$HOST" = "x"] ; then
 exit 1
 fi

 # send check result to Nagios
 CLK='date +%s'
 echo "[$CLK] PROCESS_SERVICE_CHECK_RESULT;$HOST;$SVC;2;Trap received"

 exit 0

When used for a volatile service, this offers a convenient way to track SNMP traps
and notifi cations in Nagios. Such a service will remain in a state until a problem is
acknowledged via the web interface.

 Using Nagios to track SNMP traps also allows you to merge it with powerful event
handling mechanisms inside Nagios. This can cause Nagios to perform other checks,
or try to recover from the error, when a trap is received.

Chapter 9

[249]

Additional Plugins
 NagiosExchange hosts a large number of third-party plugins under the Check
Plugins, Software, SNMP category (visit http://www.nagiosexchange.org/
cgi-bin/page.cgi?g=Check_Plugins/Software/SNMP/index.htm). These allow
the monitoring of the system load over SNMP, the monitoring of processes, and
storage space, and the performance of many other types of checks. You can also fi nd
checks that are dedicated to specifi c hardware, such as Cisco or Nortel routers. There
are also plugins for monitoring bandwidth usage.

There are also dedicated SNMP-based check plugins that allow the monitoring of
many aspects of Microsoft Windows, without installing dedicated Nagios agents on
these machines. This include checks for IIS web server, checking whether WINS and
DHCP processes are running, and so on.

The Manubulon site (http://nagios.manubulon.com/) also offers a very wide
variety of SNMP plugins. These offer checks for specifi c processes that are running,
monitoring the system load, CPU usage and network interfaces, and options specifi c
to routers.

Another interesting SNMP use is to monitor the network bandwidth usage. In this
case, Nagios can be integrated with the MRTG package (see http://www.mrtg.
org/). This is a utility that allows the creation of graphs of bandwidth usage on
various network interfaces that also use SNMP to gather information on traffi c.
Nagios offers a check_mrtg plugin (see http://nagiosplugins.org/man/
check_mrtg) that can be used to retrieve bandwidth usage information from the
MRTG log fi les.

Most companies that need bandwidth monitoring already use MRTG, as it is the
de-facto standard. That is why, it is a good idea to integrate Nagios if you already
have MRTG set up. Otherwise, it is better to use a dedicated bandwidth
monitoring system.

Summary
SNMP can be used by Nagios in various ways. As the protocol is widely supported
by operating systems and network devices, it is a great choice for monitoring a
wide variety of machines. SNMP features a standardized way to describe typical
parameters that describe a device—hardware, network connectivity, applications
and services, and much more. This makes accessing this information from Nagios
very easy. SNMP is enabled by default on many operating systems and most
network devices, which makes it very easy to monitor such devices in Nagios.

SNMP

[250]

The SNMP protocol has three popular versions—SNMPv1, SNMPv2c, and SNMPv3.
Luckily, Nagios can be made to talk to devices using any of these versions as long as
the plugins themselves allow the use of a specifi c version. SNMP version 3 can even
be used to put more focus on security in many internal networks using SNMPv1 or
SNMPv2c protocols as these are the more widely-supported version. Furthermore,
from a Nagios perspective no functionality is gained by using a newer version.
SNMP is mostly used on a company's intranet, which makes transmission very
secure and less prone to various attacks.

Nagios comes with several plugins that allow the performing of checks using SNMP.
They can be used to query specifi c Object Identifi ers and verify whether the value is
as expected or within specifi ed ranges. There are also additional plugins that can be
used to perform specialized checks and make sure that essential services are working
on Microsoft Windows machines, and to monitor system load, CPU utilization,
storage and memory usage, and network bandwidth usage. In most cases, there is
already at least one plugin that does the job well. Otherwise, the generic check_snmp
plugin will work in the majority of cases.

Nagios can also be integrated with SNMP traps. These are messages that other
devices will send to Nagios and/or other machines on your network that will then
be treated as check results inside Nagios. This allows the monitoring of SNMP traps
in Nagios, which in turn allows the creation of a more complex event handling
mechanism. It also helps with the integration of all other information, so that Nagios
can be used as a single point for storing all network management information.

Nagios can also be integrated with SNMP using third-party applications that already
communicate over SNMP and store their information as fi les on a machine. A good
example is MRTG, which monitors network bandwidth usage. Nagios can be set up
so that it reads MRTG information directly and uses the same values.

There are also plenty of other ways that SNMP can be harnessed inside Nagios.
Almost all dynamic languages, such as Perl, Python, or Tcl can communicate over
SNMP, as these languages have dedicated modules for doing so. This makes it very
easy to write more complex check plugins or daemons that use SNMP to monitor the
parameters of various devices.

Advanced Monitoring
Nagios can be pushed very far in terms of what can be monitored and how this can
be done. It also offers a way to balance the load of monitoring activities as well as
providing a fail-safe solution by using several Nagios servers.

This chapter describes additional techniques that can be used to monitor Windows
by installing and confi guring a dedicated agent. It shows how to communicate both
from the Nagios server to the Windows machines as well as the other way around.
It describes how to communicate with such agents, in addition to describing
other features.

This chapter covers a very popular agent available for Microsoft Windows—
NSClient++. This allows the querying of various system parameters over the
network, and offers multiple ways in which this information can then be received by
the Nagios server. Their functionality offers much more than what can be done by
querying only the SNMP.

This chapter also covers how Nagios can be confi gured so that it notifi es other
Nagios instances about the current status of all hosts and services. These techniques
can be used to create a central Nagios server that receives notifi cations from
other machines.

Notifying other instances also allows the setting up of a fail-safe confi guration
where several instances each monitor a part of the entire IT infrastructure, and this
information is gathered at a central server.

This may also be a good solution to a problem when the Nagios server is not
able to directly communicate with the checked machines being checked over a
TCP/IP connection. In such cases, another server can monitor these and report back
to Nagios.

Advanced Monitoring

[252]

This chapter also covers the basics of setting up Nagios so that it handles problems in
receiving information from other Nagios instances. If one of your Nagios monitoring
systems is down or unreachable, you would want another Nagios instance to detect
this and report it to you.

Monitoring Windows Hosts
 Nagios was originally designed to monitor UNIX operating systems. The plugins
package that is developed along with Nagios cannot be used on Microsoft Windows
systems. As mentioned in the previous chapter, SNMP can be used to monitor
Windows, and this requires installing an SNMP agent on the system.

The SNMP agent on a Microsoft Windows system allows checking for a large
number of parameters. There are, however, things that cannot be easily checked
using SNMP and the standard Nagios plugins. This includes running external
processes, gathering information unavailable via SNMP, and checking the status of
multiple parameters in a single check.

An alternative to SNMP on Microsoft Windows workstations and servers is to install
a dedicated agent that is used to monitor these systems from Nagios. The most
commonly-used agent is NSClient++ (visit http://trac.nakednuns.org/nscp/).
NSClient++ was the fi rst Windows agent to be designed to work strictly with Nagios.

Using this agent, it is possible to query the various parameters from Nagios using a
special plugin. NSClient++ can also report results directly to Nagios using the NSCA
protocol described in Chapter 7, Passive Checks, and NSCA. It is possible to set up the
types of checks that should be performed, how often, and whether they should be
reported as host or service checks. The agent will also need to know the host name of
the Nagios server, the NSCA port, the encryption method, and the password.

NSClient++
 NSClient++, now also known as NSCP, is a project that is based on, and extends,
the NSClient concept. The original concept was to create an agent for Windows that,
once installed, allows the querying of system information. NSClient created a
de-facto standard protocol that offers the ability to query variables with parameters.
NSClient++ also offers the ability to perform more complex checks using the
NRPE protocol.

 Installing NSClient++ requires passing the path where it will be installed, and
choosing the features to install. Unless you need to install NSClient++ in a specifi c
location, it is best to use the default path of C:\Program Files\NSClient++. The
next step is to choose the features that should be installed.

Chapter 10

[253]

NSClient++ comes with various features that can be installed—the main program
and various plugins. NSClient++ can also be set up to act as the NRPE daemon and
run external checks. It is also possible to make it send results over NSCA. This option
is mainly useful if your network is set up in such a way that it is not possible to
connect to the workstations. Otherwise, it is better for the Nagios daemon to
query NSClient++.

After a successful installation, the NSClient++ registers itself as a Windows service.
This has to be started by performing a reboot of the system or by going to the
Services management console in Administrative Tools.

In order to start the service, select the NSClientpp service and click on the Start
the service action on the left. NSClient++ comes with the main engine, the plugin
that accepts checks over the network, the NRPE daemon, and the ability to perform
check and reports results automatically via NSCA. It is best to choose all of the
features during installation. These features also need to be explicitly enabled in the
confi guration fi le.

Advanced Monitoring

[254]

A fter being installed, NSClient++ needs to be confi gured. The confi guration
fi le is called NSC.ini and is located in the application folder by default; this is
C:\Program Files\NSClient\NSC.ini. After a fresh installation, a default
confi guration is installed. This contains a list of all the available parameters along
with comments for all of them. It also has all of the features disabled, so only the
ones you need will be enabled. We now need to enable the features we would need
to use.

The confi guration is split into several sections. Each section begins with a section
name enclosed in brackets. For example, the fi rst section begins with the statement,
[modules]. This part of the confi guration defi nes which modules should be loaded,
by simply specifying each DLL. The Settings section is used for specifying global
parameters. The most important is allowed_hosts, which is a list of the IP addresses
or IP ranges that can connect to the agent. The password, option, specifi es the
password that will be used for authenticating Nagios checks. If a password is not
specifi ed, then all checks will be accepted. The NSClient and NRPE sections are used
for confi guring the acceptance of requests from the Nagios daemon using these
two protocols.

If you plan on using NSCA, then the NSCA Commands section allows the defi nition of
one or more checks that should be performed and reported to the Nagios daemon
over NSCA. Connectivity with the NSCA daemon can be confi gured in the NSCA
Agent section.

The following is a sample confi guration fi le that loads all types of checks, the NSCA
agent, and sets up NSClient and NSCA.

 [modules]
FileLogger.dll
CheckSystem.dll
CheckDisk.dll
CheckEventLog.dll
CheckHelpers.dll
CheckWMI.dll
CheckExternalScripts.dll
NSClientListener.dll
NRPEListener.dll
NSCAAgent.dll

[Settings]
allowed_hosts=192.168.0.0/16
use_file=1

[NSClient]
port=12489

[NRPE]
port=5666

Chapter 10

[255]

[NSCA Agent]
interval=60
encryption_method=1
password=mysecret
hostname=windows1
nsca_host=192.168.2.51
nsca_port=5667

[NSCA Commands]
CPU Usage=checkCPU warn=80 crit=90 time=20m time=10s time=4

If you are not interested in using NSCA, all that you need to do is to comment out
the NSCAAgent.dll line in modules section.

Performing Tests via check_nt
N SClient++ offers a uniform mechanism for querying system information. Basic
system information can be retrieved using the check_nt command from a standard
Nagios plugins package.

The syntax and options of the command is as follows:

check_nt -H <host> [-p <port>] [-P <password>] [-w level] [-c level]

 -v <variable> -l <arguments>

Option Description
-H, --hostname The host name or IP address of the machine to connect to; this option

must be specifi ed
-p, --port The TCP port number to connect to; defaults to 1248; for NSClient++

it should be set to 1248, which is the default port
-P, --password The password to use for authentication; this is optional and is needed

only if a password is set up on the Windows agent
-v, --variable The variable to query; see the list below for the possible parameters
-l, --arguments The arguments that should be passed to the variable; this parameter

is optional
-w, --warning Specifi es the return values above which a warning state should

be returned
-c, --critical Specifi es the return values above which a critical state should

be returned

The variables that can be checked are predefi ned. Most checks return both the string
representation and an integer value. If an integer value is present ,then the -w and -c
fl ags can be used to specify the values that should indicate a problem.

Advanced Monitoring

[256]

The fi rst variable is CPULOAD, which allows the querying of processor usage over
a specifi ed period of time. The parameters are one or more series of <time>,
<warning>, and <critical> levels, where the time is a period in minutes and the
warning/critical values specify the CPU usage in percentage that should trigger a
problem. For example:

check_nt –h 192.168.2.11 -v CPUUSAGE –l 1,80,90
CPU Load 2% (1 min average) | '1 min avg Load'=2%;80;90;0;100

The variable USEDDISKSPACE can be used to monitor space usage. The argument
should be a partition letter; the -w and -c options should be used to specify the used
disk space percentage that should trigger a problem. For example:

check_nt –h 192.168.2.11 -v USEDDISKSPACE –l C –w 80 –c 90
C:\ - total: 24.41 Gb - used: 17.96 Gb (74%) - free 6.45 Gb (26%) |
'C:\ Used Space'=17.96Gb;0.00;0.00;0.00;24.41

System services can also be monitored using the SERVICESTATE variable. The
arguments should specify one or more internal service names, separated by
commas. Internal service names can be checked in the Services management
console. For example:

check_nt –h 192.168.2.11 -v SERVICESTATE -l NSClientpp,Schedule
OK: All services are running.

As with to services, it is also possible to monitor processes running on a Windows
machine. The PROCSTATE, variable, can be used to achieve this. The variable accepts a
list of executable names separated by commas. For example:

check_nt –h 192.168.2.11 -v PROCSTATE -l winword.exe
OK: All processes are running.

Monitoring memory usage can also be checked this way. To perform this kind of
check, use the MEMUSE variable. This does not require any additional arguments. The
arguments -w and -c are used to specify the warning and critical limits. For example:

check_nt –h 192.168.2.11 -v MEMUSE -w 80 -c 90
Memory usage: total:5891.77 Mb - used: 846.01 Mb (14%) - free: 5045.75
Mb (86%) | 'Memory usage'=846.01Mb;4713.41;5302.59;0.00;5891.77

 Another thing that can be checked is the age of a fi le, using the FILEAGE variable.
This allows the verifi cation of whether a specifi ed fi le has been modifi ed within a
specifi ed time period. The arguments, -w and -c, are used to specify the warning and
critical limits. Their values indicate the number of minutes within which a fi le should
have been modifi ed—a value of 240 means that a fi le has been modifi ed within the
last 4 hours. For example:

check_nt –h 192.168.2.11 -v FILEAGE -l \

Chapter 10

[257]

 "C:\\Program Files\\NSClient++\\NSC.log" -w 5 -c 10

 0 years 0 mon 0 days 0 hours 0 min 0 sec

 It is also possible to check the version of the agent. This makes render the
maintainenance of upgrades and new versions much easier. The CLIENTVERSION,
variable, allows the retrieval of version information. For example:

check_nt –h 192.168.2.11 -v CLIENTVERSION
NSClient++ 0.3.2.9 2008-05-17

Using check_nt, it is also possible to query the Windows counters for information.
However, this method is deprecated, as querying Windows Management
Instrumentation (WMI, visit http://en.wikipedia.org/wiki/Windows_
Management_Instrumentation), available as NRPE, is a much more powerful
feature. NPRE is described in the next section.

WMI is a mechanism that allows applications to access the system management
information using various programming languages. WMI offers an extensive set of
information that can be retrieved. It describes the hardware and operating system as
well as the currently-installed applications and the running applications. WMI also
offers a query language (visit http://en.wikipedia.org/wiki/WQL) very similar to
the SQL (Structured Query Language; http://en.wikipedia.org/wiki/SQL) that
makes the retrieval of specifi c information very easy.

Performing Checks with NRPE Protocol
 Another way to communicate with NSClient++ is over NRPE (described in more
detail in Chapter 8). UNIX machines offer a way to run external commands via
NRPE. In this case, the protocol can be used for querying internal functions as well as
running external commands or scripts.

NSClient++ requires the modifi cation of the NSC.ini confi guration fi le in order to
offer querying data over NRPE. The fi rst thing that needs to be done is to enable
NRPEListener.dll and CheckExternalScripts.dll entries in the modules section.
The fi rst one is responsible for handling NRPE protocol, while the second module
allows the creation of aliases for internal commands and external scripts.

NSClient++ can be confi gured to use both internal commands and external scripts to
perform actual checks. Internal commands defi ne aliases for checks that will be done
internally, without launching external applications. NSClient++ allows the defi nition
of aliases that are used later on when invoking the check_nrpe command from the
Nagios server. The section External Alias, in the NSClient++ confi guration allows
the defi nition of aliases for the actual commands.

Advanced Monitoring

[258]

The following are some examples of aliases:

[External Alias]
check_cpu=checkCPU warn=80 crit=90 time=5m time=1m
check_mem=checkMem MaxWarn=80% MaxCrit=90% ShowAll type=physical
check_no_ie= CheckWMI -a 'Query:load=SELECT Caption FROM Win32_
Process' +filter-string:Caption=iexplore.exe MaxCrit=1

The check_no_ie alias needs to be put on a single line in the confi guration fi le.
The fi rst alias is used to monitor CPU usage. The second one allows the monitoring
of memory. The third example uses the WMI command to list processes and fi nd
iexplore.exe. It will return a critical state if at least one iexplore.exe process
is found.

In order to perform a check from Nagios, the following command can be used:

check_nrpe –h 192.168.2.11 -c check_cpu
OK CPU Load ok.|'5m'=48;80;90; '1m'=45;80;90; '30s'=45;80;90;

The $IP argument is the IP address of the remote host that a check should be
performed against.

It is also possible to use direct NSClient++ NRPE commands without aliases.
This requires setting the allow_arguments option to 1 in the NRPE section the NSC.
ini fi le.

In such a case, it is possible to do the following:

check_nrpe –h $IP -c check_cpu –a warn=80 crit=90 time=5m time=1m
OK CPU Load ok.|'5m'=48;80;90; '1m'=45;80;90; '30s'=45;80;90;

The commands that can be used both directly and when defi ning aliases in External
Alias confi guration section can be found in the commands documentation (http://
trac.nakednuns.org/nscp/wiki/CheckCommands).

NSClient++ also allows the execution of external commands, similar to the UNIX
NRPE implementations. This can be used to run various types of scripts, as well as
executables. The default confi guration comes with some sample defi nitions.

The following are a few examples that show how to use the various scripting
languages:

[External Scripts]
check_vbs_sample=cscript.exe //T:30 //NoLogo scripts\check_vb.vbs
check_tcl_test=tclsh.exe scripts\check_tcl.tcl
check_python_test=python.exe scripts\check_python.py

Chapter 10

[259]

The fi rst check uses the standard Windows Script Host mechanism for running a
Visual Basic script. In order to run Tcl or Python scripts on Windows, a distribution
of these languages needs to be installed. The most popular ones are ActiveTcl
(http://www.activestate.com/Products/activetcl/) and ActivePython
(http://www.activestate.com/Products/activepython/), both maintained by
the ActiveState company.

 Running external commands does not differ from running internal ones. This makes
it possible to dynamically change between internal checks and external scripts when
necessary.

For example:

check_nrpe –h $IP -c check_tcl_test
OK from Tcl 8.4.19 as C:/Tcl/bin/tclsh.exe (pid 1234)

As with to other NRPE implementations, NSClient++ also allows the passing of
parameters to commands that are to be executed.

For example, the following alias allows the monitoring of the CPU adaptively:

[External Alias]
check_cpu2=checkCPU warn=$ARG1$ crit=$ARG2$ time=5m time=1m

To perform the check, the following command needs to be run:

check_nrpe –h $IP -c check_cpu2 –a 80 90
OK CPU Load ok.|'5m'=48;80;90; '1m'=45;80;90; '30s'=45;80;90;

Passive Checks using NSCA Protocol
 NSClient++ offers a way for Windows machines to send results to the Nagios server
using the NSCA protocol. This is done by incorporating the sending mechanism
in the agents. A very common situation is where network routers or fi rewalls
are fi ltering out communication to the Windows machines. It is impossible to
communicate using the check_nt and check_nrpe plugins. In such cases, sending
results over NSCA is the only option.

Setting up the NSCA functionality is very simple. The fi rst thing that needs to
be done is to enable the NSCAAgent.dll library in the modules section. It is also
necessary to confi gure the section NSCA Agent. This confi gures the checks interval
(in seconds) and the connection options—encryption, password, NSCA host, and
port. For details on NSCA connectivity, please refer to Chapter 7 Passive Checks
and NSCA.

Advanced Monitoring

[260]

Confi guration also specifi es the local host name that should be used when reporting
to the NSCA daemon. The section, NSCA Commands, specifi es the list of commands
that are to be checked, and services they should be reported as. The host name
and services need to refl ect the actual names used in the Nagios confi guration.
Otherwise, reports from NSClient++ will be discarded by Nagios.

The following is an example of such a confi guration:

[NSCA Agent]
interval=300
encryption_method=1
password=test
hostname=windows1
nsca_host=192.168.2.51
nsca_port=5667

[NSCA Commands]
check_cpu=checkCPU warn=80 crit=90 time=20m time=10s time=4
check_no_ie= CheckWMI -a 'Query:load=SELECT Caption FROM Win32_
Process' +filter-string:Caption=iexplore.exe MaxCrit=1

NSCA check alias defi nitions are the same as the NRPE aliases. The commands
that can be used in NSClient++ when defi ning NSCA commands can be found
in the commands documentation (http://trac.nakednuns.org/nscp/wiki/
CheckCommands).

In order for Nagios to accept information coming from the Windows machine, we
also need to create a corresponding service for it.

The following is an example that has active checks disabled and allows only passive
checks to be received.

 define service
 {
 use generic-service
 host_name windows1
 service_description check_cpu
 active_checks_enabled 0
 passive_checks_enabled 1
 }

We also need to have the NSCA server running on the Nagios server. This is
described in more detail in Chapter 7.

Chapter 10

[261]

Distributed Monitoring
 There are many situations in which you might want to have more than one Nagios
instance monitoring your IT infrastructure. One reason can be a fi rewall blocking
all but a few machines in your company. Another reason would be the need to
load-balance all checks so that they don't require an enterprise-class server. Other
people may need to monitor machines in different physical locations from separate
machines to be able to check what is wrong within a branch, even if the links to
central servers are temporarily down.

Regardless of the reason, you may need, or want the execution of checks to be split
across multiple computers. This type of setup might sound complicated and hard to
confi gure, but with Nagios, it is not as hard as it seems. All that's necessary is to set
up multiple Nagios instances along with the NSCA agents or daemons.

There are subtle the various in how the various instances need to be confi gured.
Usually, there are one or more Nagios instances that report information to a single
central Nagios instance. We will refer to an instance that reports information to
another Nagios machine as a slave. A Nagios instance that receives reports from one
or more slaves will be referred to as a master.

Let's consider a simple organization that has four branches and a headquarters. Each
branch is connected to the main offi ce and has a local set of computers. A typical
scenario is that a local instance of Nagios monitors the computers and routers in a
single branch. The results are then sent to the central Nagios server over an NSCA
protocol. These are instances of slave Nagios. When a connection to one of the
branches is broken, the local administrators still have access to the status of the local
machines. This information is not propagated to the master Nagios server. Setting
up the services on the central Nagios server to use freshness checks will cause the
central Nagios server to generate an alert when no results are received within a
predetermined timeframe. Combining this with parent confi gurations will cause
Nagios to determine the root cause of the problems accurately.

Advanced Monitoring

[262]

The following diagram shows how a typical setup in a multiple-branch confi guration
is done. It shows the network topology, which machines are checked by which
Nagios servers, and how this information is reported to the central Nagios server.

Company branch 4 Company branch 3

database3webserver3

nagios3
switch3

webserver4 database4

nagios4
switch4

Company branch 1 Company branch 2

switch2
nagios1 nagios2

webserver1 webserver2database1 database2

switch1 switch1

HQ switch
HQ nagios

switch1

Company branch

Network infrastructure

Nagios checks

Nagios reporting

Legend:

In this example, each branch has a Nagios slave server that monitors and logs
information on the local computers. This information is then propagated to the
master Nagios server.

Chapter 10

[263]

Obsessive Notifications
M onitoring IT infrastructure using multiple Nagios instances requires a way to
send information from slave servers to one or more master servers. This can be
done as events that are triggered when a service or a host state changes. However,
this has a huge drawback of necessitating the set-up of an event handler for each
object. Another disadvantage is that the event handlers are only triggered on actual
changes, and not after each test is done.

Nagios offers another way to do this, through obsessive notifi cations. These provide
a mechanism for running commands when a host or a service status is received—
regardless of whether it is a passive or active check result. The mechanism is also set
up system-wide, which means that object defi nitions do not need to be changed in
any way for Nagios to send information about their status changes.

S etting up obsessive notifi cations requires a couple of changes in your confi guration.
The fi rst one is to defi ne a command that will be run for each notifi cation. An
example of this is shown below:

define command
{
 command_name send-ocsp
 command_line $USER1$/send-ocsp 192.168.1.4 $SERVICESTATE$
 $HOSTNAME$ '$SERVICEDESC$' '$SERVICEOUTPUT$'
}

The command line needs to be entered on a single line in your confi guration fi le.
You will also need to specify the actual IP address of the example IP of your central
Nagios server in place of 192.168.1.4 in the example.

We now need to write command that simply pass the results to the other server, over
NSCA.

A sample script would be as follows:

#!/bin/sh

args: nsca-server hostname svcname status output

map status to return code
RC=-1
case "$2" in
 OK)
 RC=0
 ;;
 WARNING)
 RC=1

Advanced Monitoring

[264]

 ;;
 CRITICAL)
 RC=2
 ;;
esac

echo -e "$3\t$4\t$RC\t$5" | /opt/nagios/bin/send_nsca \
 -H $1 -c /etc/nagios/send_nsca.cfg

exit 0

The next step is to enable obsessive notifi cations for services, and to set up the correct
commands to be run in the main Nagios confi guration fi le.

The following are the required parameters, along with example values that should
be set:

obsess_over_services=1
ocsp_command=send-ocsp

The command name should match the name in the command defi nition.

T hat's it! After reloading your Nagios confi guration, the send-ocsp script will be run
every time a check result comes in.

Confi guring Nagios to send host status information is very similar to setting up
service status to be sent. The fi rst thing that we need to set up is the command that
will be run for each notifi cation. It is as follows:

define command
{
 command_name send-ochp
 command_line $USER1$/send-ochp 192.168.1.4 $HOSTSTATE$
 $HOSTNAME$ '$HOSTOUTPUT$'
}

Please note that the command_line directive above needs to be specifi ed on a
single line.

The script to send information will look exactly like the one for sending the host status
information except that the actual command sent over NSCA would be generated a bit
differently, by sending only the host name, to indicate that it's a host check result:

echo -e "$3\t$RC\t$4" | /opt/nagios/bin/send_nsca \
 -H $1 -c /etc/nagios/send_nsca.cfg

In order for Nagios to send notifi cations to another Nagios instance, we also need to
enable obsessing over hosts, and specify the actual command to use.

Chapter 10

[265]

Here are some example directives in nagios.cfg:

obsess_over_hosts=1
ochp_command=send-ochp

After these changes have been made to the confi gurations, Nagios needs to be
restarted. After that, Nagios should start sending notifi cations.

A good thing to do is to check the nagios.log fi le to see if notifi cations are being
sent out after a check has been made. By default, the fi le is in the /var/nagios
directory. If the notifi cations are not received, it may be a good idea to make the
scripts responsible for sending messages to log this information in either the
system log or in a separate log fi le. This is very helpful when it comes to debugging
instances where the notifi cations sent out by slave Nagios instances get lost. Writing
information to the system log can be done using the logger command (http://
linux.die.net/man/1/logger) .

 Configuring Nagios Instances
S etting up multiple servers to monitor the infrastructure using Nagios is not trivial.
However, is not very hard either. It only requires a slightly different approach
as compared to setting up a single machine. That said, there are issues with the
confi guration of hosts and services themselves. It is also necessary to set up all slave
and master servers correctly, and in a slightly different way.

Distributed monitoring requires having a more mature change control and
versioning process for Nagios confi gurations. This is necessary because both
the central Nagios server and its branches need to have a partial or complete
confi guration available, and these need to be in sync across all machines.

Usually, it is recommended that you make the slave servers query both the service
and the host status. It is also recommended that you disable service checks on the
master Nagios server, but keep the host checks enabled. The reason for this is that
host checks are not usually scheduled and are done only when a service check
returns a warning, critical or, unknown status. Therefore, the load required for
only checking the hosts is much lower than performing regular service checks. In
some cases, it is best to also disable host checks. Either the host checks need to be
performed regularly or the security policies should disallow checks being done by
the central server.

Advanced Monitoring

[266]

Our recommendation for maintaining Nagios confi gurations is to set up a versioning
system such as CVS (Concurrent Versions System—http://www.cvshome.org/)
or Subversion (http://subversion.tigris.org/). This will allow you to keep
track of all of the Nagios changes and make it much easier to apply confi guration
changes to multiple machines. Storing and managing the confi guration can be done
in a similar way as we had done previously. Hosts, services, and the corresponding
groups should be kept in directories, separately for each Nagios slave—for example,
hosts/branch1 and services/branch1. All other types of objects, such as contacts,
time periods, and check commands can be kept in global directories and
re-used in all branches—for example, the single contacts, timeperiods, and
commands directories.

It's also a good idea to create a small system for deploying the confi guration to all
the machines, along with the ability to test new confi guration before applying it
in production. This can be done by using a small number of shell scripts. Doing
everything manually when dealing with multiple computers, locations and Nagios
instances is very diffi cult and can get problematic over the long term. This will
cause the system to become unmanageable, and can lead to errors in actual checks
caused by out-of-sync confi gurations between the slave and master Nagios instances.
A very popular tool that is recommended for this purpose is cfengine (http://
www.cfengine.org/). This allows the automation of confi guration deployment
and ensuring that Nagios is up-to-date on all the machines. It also allows for
customization—for example, a different set of fi les can be deployed on slave servers
than on the master server.

The fi rst step in setting up a distributed environment is to set up the master Nagios
server. This will require the installation of Nagios from a binary distribution,
or building it from sources. Details related to Nagios installation are described
in Chapter 2.

The main differences from a single Nagios set up for a master server are defi ned in
the main Nagios confi guration fi le—nagios.cfg. This needs to contain the cfg_dir
directives for objects related to all of the slave servers. Otherwise, the master Nagios
instance will ignore the reports related to the hosts that it does not know about.

 We'll also need to make sure that Nagios accepts passive check results for services,
and that the master Nagios instance does not perform any active checks on its own.
To do this, set the following options in the main Nagios confi guration fi le on the
master server:

check_external_commands=1
accept_passive_service_checks=1
execute_service_checks=0

Chapter 10

[267]

If you also want to rely on passive check results for host checks, you will also need
to add the following lines to your main Nagios confi guration:

accept_passive_host_checks=1
execute_host_checks=0

You will also need to set up the NSCA daemon on the master Nagios server. Details
of how to set this up are described in Chapter 7 Passive Checks and NSCA.

The next step is to set up fi rst slave server that will report to the master Nagios
instance. This also necessitates setting up Nagios from a binary or source
distribution, and confi guring it properly.

All of the slave Nagios instances also need to have the send_nsca command from
the NSCA package in order to be able to communicate changes to the master
instance. After setting up the NSCA client, we also need to create a confi guration
for sending notifi cations. It is also a good idea to check that sending dummy reports
about an existing host and an existing service works correctly.

All of the slave instances need to be set up to send obsessive notifi cations to the
master Nagios server. This includes setting up the OCSP and OCHP commands, and
enabling them in the main Nagios confi guration fi le. (Obsessive notifi cations have
already been described in the previous section.)

After setting everything up, it's best to run notifi cation commands directly from the
command line to see if everything works correctly. Next, a restart of the slave Nagios
server is needed. After that, it would be a good idea to check the Nagios logs to see if
the notifi cations are being sent out.

It would also be a good idea to write down or automate all the steps needed to set up
a Nagios slave instance. Setting up the master is done only once, but large networks
might require the set-up of a large number of slaves.

Freshness Checking
 We now have distributed monitoring set up and the slave Nagios instances should
be reporting results to the master Nagios daemon. Things should be working fi ne,
and the main Web interface will be reporting up–to-date information from all of the
hosts and services being monitored.

Advanced Monitoring

[268]

Unfortunately, it is not always the case. In some cases, network connectivity can
be down, the NSCA agents, daemon, or anything else on the network might fail
temporarily, and the master Nagios instance may not even know about it. Because
our basic assumption is that master Nagios instance is not responsible for monitoring
the IT infrastructure, it needs to rely on other systems to do it. Confi guration, as
described earlier, does not take into account a situation where checks are not sent to
the master instance.

Nagios offers a way to monitor whether results have come within a certain period
of time. We can specify that if no report has come in within a certain amount of
time, Nagios should treat this as a critical state and warn the administrators about
it. This makes sense as obsessive notifi cations are sent out very frequently. So if no
notifi cation has come within half an hour, this means that there is a problem with
some part of the distributed monitoring confi guration.

Implementing this in the master Nagios confi guration requires a slightly different
approach to the one mentioned in the previous section. In this case, it is necessary to
enable service (and host, if needed) checks on a global basis in the nagios.cfg fi le.
The approach in the previous section was to disable service checks completely. That
is why all services and/or hosts needed to have their active checks reconfi gured in
order for the new approach to work correctly.

For the reasons given above, all of the services and/or hosts that receive
notifi cations from slave Nagios instances need to be defi ned differently in the master
confi guration to the defi nitions that are set for the Nagios slaves.

The fi rst change is that active checks for these objects need to be enabled, but should
not be scheduled. That is, the option normal_check_interval should not be set.
In addition, the check_freshness and freshness_threshold options need to be
specifi ed. The fi rst of these options enables monitoring whether results are up-to-
date, and the second one specifi es the number of seconds after which the results
should be considered outdated.

This means that Nagios will only run active checks if there has been no passive check
result for a specifi ed period of time. It is very important that the host and service
defi nitions on both the master and slave instances have the same value specifi ed
for the check_period directive. Otherwise, the master Nagios instance might raise
an alert for services that are checked only during specifi c time periods. An example
could be the workinghours time period, which is not checked on weekends.

Chapter 10

[269]

For example, the following service defi nition will accept passive checks but will
report an error if they are not present:

 define service
 {
 use generic-service
 host_name linuxbox02
 service_description SSH
 check_command no-passive-check-results

 check_freshness 1

 freshness_threshold 43200

 active_checks_enabled 1

 passive_checks_enabled 1
 }

The freshness_threshold option specifi es the number of seconds after which an
active check should be performed. In this case, it is set to 12 hours.

 It is also necessary to defi ne a command that will be run if no passive check results
have been provided.

The following command will use the check_dummy plugin to report an error:

 define command
 {
 command_name no-passive-check-results
 command_line $USER1$/check_dummy 2 "No passive check
 results"
 }

It is important to make sure that all of the services and/or hosts are defi ned so that
no actual active checks will be performed, only dummy checks that report problems.
This is different from our previous approach that made sure that active checks were
not performed.

Using passive checks for regular reporting, and performing active checks when no
passive results have been provided, is described in more detail in Chapter 7. The
main difference is that in our case no actual checks will be performed if passive
results are not available.

The main drawback of this approach is that it makes managing confi gurations on
master and slave instances more diffi cult. We need to maintain the confi guration for
the master Nagios instance that contains the service with only the dummy freshness
checks. However, slave confi gurations need to have complete check defi nitions
in place.

Advanced Monitoring

[270]

In order to avoid reconfi guring all of the objects, and managing two sets of
confi gurations, it is possible to use Nagios 3.x' s multiple inheritance to manage the
confi gurations effi ciently. Assuming that all checks will be put in templates, it is
possible to either redefi ne these templates, or create a template that is inherited by
all of the objects that will overwrite the various parameters. Assuming inheritance
would specify something like generic-service,check-smtp,and master-
override, the template could be blank on slave instances, but the master version
would contain the directives to overwrite the template parameters with actual check
parameters.

Summary
Nagios offers multiple ways to monitor Microsoft Windows workstations and
servers. These vary from monitoring computers remotely, to querying SNMP and
installing dedicated agents.

Installing agents to monitor Microsoft Windows systems may be a time-consuming
task. However, the advantage is that dedicated agents such as NSClient++ can be
confi gured to perform checks that cannot be performed otherwise. It can read WMI,
and monitor system processes and services. In addition, such agents can run external
binaries and scripts so that any language you are familiar with can be used to
perform additional checks.

NSClient++ can also send results directly to Nagios using the NSCA protocol.
This can be used to avoid problems with fi rewalls and security policies which may
disallow connections to Windows machines.

Another very interesting feature of Nagios is its ability to confi gure multiple
machines easily in order to perform monitoring, and also to have a single place
where the results are easily available.

This can be used to split the load related to actually performing the checks. It can
also be a solution to the fi rewall and security policies. A local instance can query all
of the machines in the same location and report back to the central server.

Unlike many other systems, Nagios does not require a huge rework to allow
the splitting of checks into several computers. Setting up a working, usable, and
distributed monitoring system is only a little more as compared to monitoring all
your resources from a single server.

Nagios can also make sure that the results sent by other instances are up-to-date.
This deals with situations where a broken network connection or Nagios server
causes problems to go unnoticed as no critical results are sent to the master
Nagios server.

Extending Nagios
One of the key features of Nagios is its extensibility. There are multiple ways in
which Nagios can be tailored to suit your needs. It is also possible to integrate
Nagios tightly with your applications and benefi t from a powerful mechanism for
scheduling and performing checks.

The fi rst and the easiest way to adapt Nagios is to perform checks customized to
your company's needs. The default Nagios plugins suit most needs very well—they
allow simple checking of databases, web sites, and various networked or local
services. However, in many cases this may not be enough. You might want to create
a script to verify that critical tables in a database are not corrupted, or that your
website actually works and communicates with web services over SOAP.

 Another area that can be customized in a variety of ways is how users are notifi ed
about problems. By default, Nagios is able to send emails to users when a problem
occurs. There are also plugins for various protocols, such as Jabber (http://www.
jabber.org/). However, sometimes you may need to integrate Nagios with your
company's applications or the corporate instant messenger. In such cases, you're able
to create scripts or binaries that will send notifi cations the way you want to.

If your application is already performing diagnostic checks, it can be integrated
with Nagios so that the application will report the status of the checks it performs as
passive check results. We'll show how this can be done. It is also possible that your
application can control Nagios—telling it to perform checks.

We will also discuss how to schedule the performance of long lasting tests. These
tests can be anything from verifying bad sectors on a disk to running suites of tests
for your applications on a regular basis.

Finally, there's also room for using more than one of the functions mentioned above.
For example, after Nagios detects a problem, an event handler may attempt to fi x it
and then reschedule another check to verify whether the problem still exists.

Extending Nagios

[272]

Introduction
 The most exciting aspect of using Nagios is the ability to combine your programming
skills with the powerful engine offered by the Nagios daemon. Your own pieces
of code can be plugged into the Nagios daemon, or can communicate with it in
various ways.

One of the best things about Nagios is that, in most cases, it does not force you to use
a specifi c language. Whether the language of your choice is PHP, Perl, Tcl, Python,
or Java, you can easily use it with Nagios. This is a fundamental difference between
Nagios and the majority of monitoring applications. Usually, an application can only
be extended in the same language it is written in.

Our code can cooperate with Nagios in various ways—either by implementing
commands or by sending information to the Nagios daemon. The fi rst case means
that we create a script or executable that will be run by Nagios, and its output and
exit code is then processed by Nagios. Running external commands is used for
performing active checks, sending notifi cations, and triggering event handlers.
By using macro substitutions and variables available in the current context
(see http://nagios.sourceforge.net/docs/3_0/macrolist.html), we're able to
pass down all of the information that's needed for the command to do its job.

The alternative method of extending Nagios is to send information to it from other
applications. The fi rst option is that external applications (such as Web or typical
user interface) allow the confi guration and management of the Nagios system. This
is done by sending control commands over UNIX sockets to Nagios. Because this
involves opening and writing to a UNIX socket, which works just like a fi le, it can be
done in any programming language that handles I/O.

In this case, the fi nal option is that the other applications reporting to your
application or a system scheduling mechanism, such as cron, are responsible for
running the checks. A test needs to be carried out on its own and the application
itself is responsible for sending results back to Nagios. Results can be sent directly
via a UNIX socket or via an NSCA protocol. Luckily, even sending over a network
with NSCA is simple as results can be sent directly to the standard input of the
send_nsca command.

Your software can also get information related to Nagios easily. All that's needed
is to monitor Nagios's status.dat fi le for changes, and read it as if it contains all
object defi nitions along with the current soft and hard states. The format of the fi le
is quite simple, and the task of writing a parser for it is quite trivial. A parser for the
Tcl language can be found on the TclMentor page (http://tclmentor.kocjan.org/
search/label/nagios) .

Chapter 11

[273]

Over the course of this chapter we will use various programming languages - PHP
(http://www.php.net/), Python (http://www.python.org/), Perl (http://www.
perl.org/), Tcl (http://www.tcl.tk/), and Java (http://java.sun.com/). Even
though many people do not know all of these languages, the code will only use the
basic functionality of the languages so that it is understandable to nontechnical users.

Assuming that you need to write a piece of code on your own, the fi rst thing you
should start with is choosing the programming language. If you already know a
language that would fi t this task, stick to it. Otherwise, there are a few candidates to
consider. The language I would recommend is either Python or Tcl.

Python is a very trendy language, and its syntax makes it easy to write check
commands. It has a wide range of libraries that can be used to interact with other
software. It also has a very pleasant syntax that will seem intuitive to people coming
from C/C++ or Java.

 Tcl, on the other hand, is a bit less popular, but a very powerful language in its
own way. This is usually my fi rst choice for a programming language. It features
a very simple, but powerful syntax. Tcl is tightly integrated with an event loop,
which is handy when programming event-driven applications. This is perfectly
suitable for communicating with the Nagios server. It also comes with a huge set of
protocols and libraries to use, especially the ActiveTcl distribution from ActiveState
(http://www.activestate.com/). Throughout this book, Tcl examples will be using
packages available with ActiveTcl distributions. If your Tcl interpreter does not
have one or more of these packages, it is recommended that you install the
ActiveTcl distribution.

People who are only familiar with PHP can also feel safe about it. It's possible
to create various commands and passive check scripts in this language. It is also
possible to integrate Nagios with error reporting for your web applications.

 Nagios is known to integrate very well with Perl. This chapter teaches us how
both Perl and other languages can be easily integrated with Nagios so that readers
familiar with other languages will also benefi t from it and will learn Perl just for the
purpose of extending Nagios.

Even though we'll focus mainly on Perl, Python, Tcl, and PHP, there are many other
possibilities that can be used—C/C++ native binaries, Java, Ruby language, shell
scripts, and so on.

Extending Nagios

[274]

Active Checks
 One of most common areas where Nagios can be suited to fi t your needs is that
of active checks. These are the checks that are scheduled and run by the Nagios
daemon. This functionality is described in more detail in Chapter 2.

Nagios has a project that ships the commonly-used plugins and comes with a large
variety of checks that can be performed. Before thinking of writing anything on
your own, it is best to check for standard plugins (described in detail in Chapter 4
Overview of Nagios Plugins). It's also worthwhile to visit the NagiosExchange website
to check whether somebody has already written a similar plugin for you.

The reason for this is that even though active checks are quite easy to implement,
sometimes a complete implementation that handles errors and parameters is not very
easy to create. Typically, proper error handling can take a lot of time to implement.
Another thing is that plugins that have already existed for some time have often been
thoroughly tested by others. Typical errors will have already been identifi ed and
fi xed; sometimes the plugins will have been tested in a larger environment, under a
wider variety of conditions. Writing check plugins on your own should be preceded
by an investigation to fi nd out whether anybody has encountered and solved a
similar problem.

Active check commands are very simple to implement. They simply require a plugin
to return one or more lines of check output to the standard output stream and return
one of the predefi ned exit codes—OK (code 0), WARNING (code 1), CRITICAL (code 2),
or UNKNOWN (code 3). How active check plugins work is described in more detail at
the beginning of Chapter 4.

 Let's start with a simple check plugin. We'll implement a simple check that connects
to a MySQL database and verifi es that if the specifi ed tables are structurally
correct. It will also accept connection information from command line as a series of
arguments. We'll write the script in Python.

From a technical point of view, the check is quite—all that's needed is to connect to
a server, choose the database, and run the CHECK TABLE (http://dev.mysql.com/
doc/mysql/en/CHECK_TABLE.html) command over SQL.

The plugin requires the installation of the MySQLdb package for Python
(http://sourceforge.net/projects/mysql-python/) to work. We will also need
a working MySQL database that we can connect to, for testing purposes. It is a good
idea to install MySQL server on your local machine and set up a dummy database
with tables for testing.

In order to set up a MySQL database server on Ubuntu Linux, install the mysql-
server package as follows:

apt-get install mysql-server

Chapter 11

[275]

In Red Hat and Fedora Linux, the package is called mysql-server and the
command is:

yum install mysql-server

After that, you will be able to connect to the database locally as root, either without a
password or with the password supplied during the database installation.

If you do not have any other databases to run the script against, you can use mysql
as the database name as this is a database that all instances of MySQL have.

The following is a sample script that performs the test. It needs to be run with the
host name, username, password, database name, and the list of tables to be checked
as arguments. The table names should be separated by comma.

#!/usr/bin/env python

import MySQLdb
import sys, string

only perform check if we're loaded as main script
if __name__ == '__main__':
 dbhost = sys.argv[1]
 dbuser = sys.argv[2]
 dbpass = sys.argv[3]
 dbname = sys.argv[4]
 tables = sys.argv[5]
 errors = []
 count = 0

 # connect to the database
 conn = MySQLdb.connect(dbhost, dbuser, dbpass, dbname);
 cursor = conn.cursor()

 # perform check for all tables in the table list
 # (splits the table names by ",")
 for table in string.split(tables, ","):
 cursor.execute("CHECK TABLE %s" % (table))
 row = cursor.fetchone()
 count = count + 1
 if row[3] != "OK":
 errors.append(table)

 # handle output – if any errors occurred, report 2, otherwise 0
 if len(errors) == 0:
 print "check_mysql_table: OK %d table(s) checked" % count
 sys.exit(0);
 else:

Extending Nagios

[276]

 print "check_mysql_table: CRITICAL: erorrs in %s" % \
 (string.join(errors, ", "))
 sys.exit(2);

 The code consists of four parts—initialization, argument parsing, connection, and
checking each table. The fi rst part consists of import statements that load various
required modules and make sure that the code is run from the command line. In the
second part, the arguments passed by the user are mapped to the various variables.
After that, a connection to the database is made. If the connection succeeds, for each
table specifi ed when running the command, a CHECK TABLE command (http://dev.
mysql.com/doc/refman/5.0/en/check-table.html) is run. This makes MySQL
verify that the table structure is correct.

To use it, let's run it by specifying the connection information, and tables tbl1, tbl2,
and tbl3:

root@ubuntu:~# /opt/nagios/plugins/check_mysql_table.py \
 127.0.0.1 mysqluser secret1 databasename tbl1,tbl2,tbl3
check_mysql_table: OK 3 table(s) checked

As you can see, the script seems quite easy and it is usable.

The next task is to create a check plugin that compares the local time with the time
on a remote machine and issues a warning or critical state if the difference exceeds a
specifi ed number. We will use Tcl for this job.

We'll use Tcl's time package (http://tcllib.sourceforge.net/doc/ntp_time.
html) to communicate with remote machines. This package comes bundled with
ActiveTcl and is a part of the tcllib package available in many Linux distributions.

If you do not have the tcllib and/or time packages, you will need to install them. On
Ubuntu Linux, the package is called tcllib and the following command installs it:

apt-get install tcllib

 The script will accept the host name, and the warning, and critical thresholds in
number of seconds. The script will use these to decide on the exit status. It will also
output the number of seconds difference for informational purposes.

The following is a script to perform a check of the time on a remote machine:

#!/usr/bin/env tclsh

package require time

retrieve arguments for the script
set host [lindex $argv 0]
set warndiff [lindex $argv 1]

Chapter 11

[277]

set critdiff [lindex $argv 2]

retrieve times
set handle [time::gettime $host]
set remotetime [time::unixtime $handle]
time::cleanup $handle
set localtime [clock seconds]

calculate difference
set diff [expr {abs($remotetime - $localtime)}]

decide which exit code should be used
if {$diff > $critdiff} {
 puts "check_time CRITICAL: $diff seconds difference"
 exit 2
} elseif {$diff > $warndiff} {
 puts "check_time WARNING: $diff seconds difference"
 exit 1
} else {
 puts "check_time OK: $diff seconds difference"
 exit 0
}

This command is split into three parts: initializing, parsing arguments, and checking
status. The fi rst part loads the time package, the second maps the arguments to
variables. After that, a connection to remote host is made, the time on the remote
machine is received, and this remote time compared with the local time. Based on
what the difference is, the command returns either a CRITICAL, WARNING, or
OK status.

And now let's run it against a sample machine:

root@ubuntu:~# /opt/nagios/plugins/check_time.tcl \
 ntp2a.mcc.ac.uk 60 120

check_time WARNING: 76 seconds difference

As shown, the script works properly.

Writing Plugins the Right Way
 We have already created a few sample scripts, and they're working. So it is possible
to use them from Nagios. But these checks are very far from being complete. They
lack error control, parsing, and argument verifi cation.

Extending Nagios

[278]

It is recommended that you write all the commands in a more user-friendly way.
The reason is that, in most cases, after some time, someone else will take over your
custom check commands. You might also come back to your own code after a year of
working on completely different things. In such cases, having a check command that
is user friendly, commented, and allows debugging will save a lot of time.

The fi rst thing that should be done to provide the proper handling of
arguments—this means using functionality such as the getopt package for Python
(http://www.python.org/doc/2.5/lib/module-getopt.html) or the cmdline
package for Tcl (http://tcllib.sourceforge.net/doc/cmdline.html) to parse
the arguments. This way, functionality such as --help parameter will work properly
and in a more user-friendly way.

Another thing worth considering is proper error handling. If connectivity to a remote
machine is not possible, the check command should exit with a critical or unknown
status. In addition, all other pieces of the code should be wrapped to catch errors
depending on whether an error suggests a failure in the service being checked, or is
due to a problem outside a checked service.

Using the example of the fi rst check plugin, we can redesign the beginning of the
script to parse the arguments correctly. The reworked plugin sets the values of all
of the parameters to their default value and then parses the options, corresponding
values based on what the argument is. The script also allows specifi cation of the --
verbose fl ag to tell the plugin that it should report more information on what it is
currently doing.

 Finally, the connection is wrapped in try ... except Python statements to catch
exceptions when connecting to the MySQL server. This statement is used to detect
errors when running the commands between try and except. In this case, if a
connection to the database could not be established, the script will handle this and
report an error, instead of returning a Python error report.

It's also a good practice to wrap the entire script in a try ... except statement, so
that all potential errors or unhandled situations are sent to Nagios as a general error.
In addition, if the --verbose fl ag is specifi ed, more information should be printed
out. This should ease the debugging of any potential errors.

The following code extract shows the rewritten beginning of a Python script that
uses getopt to parse arguments and has used try ... except for handling errors
in connectivity:

Chapter 11

[279]

only perform check if we're loaded as main script
if __name__ == '__main__':
 dbhost='localhost'
 dbuser=''
 dbpass=''
 dbname=''
 tables=''
 verbose = False

 try:
 options, args = getopt.getopt(sys.argv[1:],
 "hvH:u:p:d:t:", ["help", "verbose", "hostname=",
 "username=", "password=", "dbname=", "tables="]
)
 except getopt.GetoptError:
 usage()
 sys.exit(3)

 for name, value in options:
 if name in ("-h", "--help"):
 usage()
 sys.exit(0)
 if name in ("-H", "--hostname"):
 dbhost = value
 if name in ("-u", "--username"):
 dbuser = value
 if name in ("-p", "--password"):
 dbpass = value
 if name in ("-d", "--dbname"):
 dbname = value
 if name in ("-v", "--verbose"):
 verbose = True
 if name in ("-t", "--tables"):
 tables = value

 if verbose:
 print " Connecting to %s@%s (database %s)" % \
 (dbuser, dbhost, dbname)

 try:
 conn = MySQLdb.connect(dbhost, dbuser, dbpass, dbname);
 except Exception:
 print "Unable to connect to database"
 sys.exit(3)

Extending Nagios

[280]

 This code also requires to defi ne a usage function that prints out the usage syntax.
This has been left out of our example and is left as an exercise for the reader.

Another change would be to add reporting on what is currently being done, if the
--verbose fl ag is passed. This helps in determining if the script is idle or is currently
trying to check specifi c table contents.

Similarly, For Tcl, we should use the cmdline package to parse arguments. It's also a
good idea to check if all arguments have been specifi ed correctly:

package require cmdline

array set opt [cmdline::getoptions argv {
 {host.arg "127.0.0.1" "Host to connect to"}
 {warntime.arg "300" "Warning threshold (seconds)"}
 {crittime.arg "600" "Critical threshold (seconds)"}
}]

set host $opt(host)
set warntime $opt(warntime)
set crittime $opt(crittime)

if {![string is integer –strict $warntime] || $warntime <= 0} {
 puts stderr "Invalid warning time specified"
 exit 3
}

if {![string is integer –strict $crittime] || $crittime <= 0} {
 puts stderr "Invalid critical time specified"
 exit 3
}

This code should replace the three lines that read the argv variable , in the original
script above. The remaining part of the check script should stay the same.

Of course, the changes mentioned here are just small examples of how plugins
should be written. It's not possible to cover all possible aspects of what plugins
should take into account. It's your responsibility as the command's author to make
sure that all scenarios are covered in your plugin.

Typically, this means correct error handling—usually related to catching all of
exceptions that the underlying functions might throw. There are also additional
things to take into account. For example, if you are writing a networked plugin, the
remote server can return error messages that also need to be handled properly.

An important thing worth considering is handling timeouts properly.

Chapter 11

[281]

 Usually, a plugin tries to connect in the background, and if it fails within a specifi ed
period of time, the plugin will exit the check and report an error status. This is
usually done through the use of child threads or child processes. In languages that
are event driven, this can be done by scheduling an event that exits with a timeout
message after a specifi ed time interval.

Checking Websites
 Nagios ships with a very powerful check_http plugin that allows you to monitor web
sites in quite a simple way. This plugin should be enough for a large variety of tasks.
However, there are often situations where using only this plugin is not enough.

If you are running a website that is critical to your business, checking only that the
main page is showing up correctly may not be enough. In many cases, you might
actually want to be sure that the users are able to log in, orders can be sent out, and
reports can be generated correctly.

In such cases, it is not suffi cient just to check if a couple of pages work correctly. It
might be necessary to write a more complex check that will log you into the website,
fi ll out an order form, send it, and verify that it shows up in the order history. You
may also want to check that a specifi ed text is present on specifi c pages.

This task is very common when either performing automated tests during the
development of a site. Not many people perform such tests regularly when the site
is in production. A downside of this is that if version control of your website is not
very strict, then small bug fi xes can break things in a different part of the website and
those might go on unnoticed for a long time.

One might argue whether this is a task for system monitoring or for the testing
phase of the development and maintenance cycles. For a number of reasons, this
task should be common to both development and maintenance but it should also
be a part of system monitoring. The fi rst reason is that such tests make sure that the
overall functionality of the site is working as expected. Monitoring the web page's
functionality should normally be performed rarely, but checks of the web server and
the main page should be done more often.

 There are a couple of approaches to this problem, depending on what you actually
want to monitor. The fi rst one is using the http or https protocol directly using
various libraries—urllib for Python (http://docs.python.org/lib/module-
urllib.html) , http (http://www.tcl.tk/man/tcl8.4/TclCmd/http.htm) for
Tcl/Tk, and LWP (http://search.cpan.org/~gaas/libwww-perl/lib/LWP.pm) for
Perl. By deciding on the appropriate approach, you will need to hardcode your URLs
along with the queries to send and, in some cases, also implement cookie handling
on your own.

Extending Nagios

[282]

Another approach is to use automated test frameworks. This includes mechanize
(http://wwwsearch.sourceforge.net/mechanize/) for Python, webautotest
(http://sourceforge.net/projects/dqsoftware/) for Tcl, and WWW::Mechanize
(http://search.cpan.org/dist/WWW-Mechanize/) for Perl. There are also multiple
Java frameworks for this, such as HttpUnit (http://httpunit.sourceforge.net/)
and HtmlUnit (http://htmlunit.sourceforge.net/). These packages offer the
automated parsing of HTML, reading of the DOM tree, and operating similar to how
a browser would work. This allows scripts to be written at a higher level without
having to care about low-level things such as reading and passing values from all
fi elds. A typical script would consist of going to an URL, locating forms, setting
values, and sending these values.

The last approach is to use packages that take advantage of Internet Explorer over
COM (Component Object Model; http://www.microsoft.com/com/). This
approach uses an entire browser and, therefore, is the most accurate method of
testing the website's correctness. It also requires a much larger set up to accomplish
the same task—tests need to be performed on a Microsoft Windows system and
require a separate account for proper cookie management. For example, in the cases
where tests need to start after all of the cookies have been removed, Perl offers the
ability to automate Internet Explorer using the PAMIE package (http://pamie.
sourceforge.net/) , while for Python it is SAMIE (http://samie.sourceforge.
net/). Tcl offers Internet Explorer automation in the autoie (http://sourceforge.
net/projects/dqsoftware/) package. For Ruby, the most popular utility is
called Watir (http://wtr.rubyforge.org/). In order to use IE and COM based
automation, you should set up all the checks on a Microsoft Windows based machine
and set it up so that the results are sent back via NSCA.

Usually, the best choice is to use automated web testing frameworks. These require
much less overheads when developing the code for performing checks and tend to
react nicely to small changes in the way your website works.

As an example, we will write a simple script in Tcl that communicates with a website
using the webautotest package. The plugin logs into the backend of a Joomla!
content management system (http://www.joomla.org/) and makes sure it that
works correctly. This test checks that all Joomla! mechanisms are working correctly.

The following is the source code of the plugin:

package require http

initialize Webautotest object
package require webautotest::httpclient
set o [webautotest::httpclient ::#auto]

Chapter 11

[283]

if {$argc != 3} {
 puts "Usage: check_joomla_backend URL username password"
 exit 3
}

set url [lindex $argv 0]
set username [lindex $argv 1]
set password [lindex $argv 2]

if {[catch {
 # go to your company's Joomla backend
 $o navigate $url

 # log in and submit form
 $o setForm -name login
 $o setFormValue username $username
 $o setFormValue password $password
 $o setFormValue lang en-GB
 $o submitForm

 # check if "Logged in Users" text can be found on the page
 set result [$o regexpDataI "Logged in Users"]
} error]} {
 puts "JOOMLA UNKNOWN: error occurred during check."
 exit 3
}

if {[llength $result] > 0} {
 puts "JOOMLA OK: Administrative panel loaded correctly."
 exit 0
} else {
 puts "JOOMLA CRITICAL: Administrative panel does not work."
 exit 2
}

To check the plugin, simply run the following command:

root@ubuntu:~# /opt/nagios/plugins/check_joomla_backend \
 http://joomla.yourcompany.com/administrator/ admin adminpassword
JOOMLA OK: Administrative panel loaded correctly.

Extending Nagios

[284]

Monitoring VMware
 Virtual machines are playing an important role in today's IT infrastructure. They
help lower the cost of hardware by allowing multiple systems to reside and re-use
resources from a single physical machine. It also allows migration from a large
number of physical hardware to a small number of high-end servers with a large
number of processors.

For Intel based platforms, VMware virtualization (http://www.vmware.com/) is
one of the most advanced technologies. This spans from desktop solutions to server
products. VMware also offers a free virtualization platform called VMware Server
(http://www.vmware.com/products/server/).

Although Nagios does not offer a large variety of plugins to monitor VMware
systems, VMware offers a Perl API that can easily be used to query virtual machines,
along with a few of their parameters. On Windows operating systems, there is also
the VmCOM API that allows interaction with VMware server product.

These functions allow querying of the virtual machine's status, guest parameters, as
well as checking whether the virtual machine is working correctly.

The next page contains a script written in Perl that allows the querying of a
particular virtual machine's state as well as making sure that it is working correctly.
The script can easily be expanded to monitor CPU usage on a particular machine by
querying cpu.cpusecs parameter using the get_resource() function from a virtual
machine object.

Even though the script is confi gured to connect to a local machine, it is possible to
specify different connection parameters so that it will query remote machines. In
such a case, it is also necessary to specify the username and password of a user who
can log into the VMware system.

For the script to work, it is necessary that the VmPerl API is confi gured to your Perl
interpreter. In order to check this, please run the following command:

root@ubuntu:~# perl -e 'use VMware::VmPerl;'

If VmPerl libraries are correctly installed then this command should pass without
any warnings or errors being generated. Otherwise, a confi guration of VMware
might be needed—VmPerl needs to be recompiled on each minor and major upgrade
of Perl.

#!/usr/bin/perl

require VMware::VmPerl::VM;
require VMware::VmPerl::ConnectParams;

Chapter 11

[285]

if (@ARGV != 2)
{
 printf "Usage: check_vmstatus <machine> <command>\n";
 exit(1);
}
($vmpath, $cmd) = @ARGV;
my $params = VMware::VmPerl::ConnectParams::new();
my $vm = VMware::VmPerl::VM::new();
$vm->connect($params, $vmpath);
my $title = $vm->get_config("displayName");

if ($cmd eq "state")
{
 if ($vm->get_execution_state() != 1)
 {
 printf "CRITICAL: %s is not running\n", $title;
 exit(2);
 }
 else
 {
 printf "OK: %s is running\n", $title;
 exit(0);
 }
}
if ($cmd eq "heartbeat")
{
 my $hb0 = $vm->get_heartbeat();
 sleep(5);
 my $hb1 = $vm->get_heartbeat();
 if ($hb0 == $hb1)
 {
 printf "CRITICAL: %s does not respond to events\n", $title;
 exit(2);
 }
 else
 {
 printf "OK: %s is alive\n", $title;
 exit(0);
 }
}

printf "UNKNOWN: invalid command\n", $cmd;
exit(3);

Extending Nagios

[286]

In order to test the script, simply run the following command:

/opt/nagios/plugins/check_vm "/path/to/Solaris.vmx" state
OK: Solaris 10 test machine is running

You will need to specify the full path to the .vmx fi le, and virtual machine needs to
be currently added to the VMware.

Your Own Notifications
 Another part of Nagios that can be extended to fi t your needs are notifi cations. These
are messages that Nagios sends out whenever a problem occurs, or is resolved.

One way in which Nagios notifi cation system can be expanded is to create
template-based email sending. This will send notifi cations as both plain text and
HTML messages. The of the email will be kept in separate fi les.

We will use Tcl for this purpose as it contains libraries for MIME (http://tcllib.
sourceforge.net/doc/mime.html) and SMTP (http://tcllib.sourceforge.
net/doc/smtp.html) functionality. The fi rst one allows the creation of structured
emails whereas the latter one is used to send these using an SMTP server.

Emails that contain content in multiple formats need to be wrapped in the
multipart/alternative MIME type. This type will contain two subparts—fi rst
the plain text version, and following this the HTML version. This order makes email
clients choose HTML over plain text if both the types are supported.

This part can then be wrapped in a multipart/related MIME type. This allows
the embedding of additional fi les such as images that can then be used from within
an HTML message. This is not used in the example shown on the next page, but can
easily be added, similarly to how text and HTML parts are embedded inside the
multipart/alternative MIME type.

In the same way as how macro substitution works in Nagios commands, templates
will replace certain strings such as $HOSTSTATE$ within the template. For example,
the following can be used in a HTML template:

<tr><td>Notification type</td>
<td>$TYPE$</td></tr>

Similar macros can be used in plain text templates and will be substituted as well.

Chapter 11

[287]

The following is a script that allows users to be notifi ed in HTML format, through
the use oftemplates:

#!/usr/bin/env tclsh

package require mime
package require smtp
package require fileutil

map arguments
set mappings {TEMPLATE EMAIL TYPE
 HOSTNAME HOSTSTATE HOSTOUTPUT}

if {[llength $argv] != [llength $mappings]} {
 puts stderr "Usage: [info script] [join $mappings]"
 exit 1
}

handle arguments
set template [lindex $argv 0]
set to [lindex $argv 1]
foreach name $mappings value $argv {
 lappend map "\$$name\$" $value
}

read template files and map variables accordingly
set textbody [string map $map \
 [fileutil::cat $template/body.txt]]
set htmlbody [string map $map \
 [fileutil::cat $template/body.html]]
set mailsubject [string map $map \
 [fileutil::cat $template/subject.txt]]

create a list of alternate formats (plain text and html)
set parts [list]
lappend parts [mime::initialize -canonical text/plain \
 -encoding 8bit -string $textbody]
lappend parts [mime::initialize -canonical text/html \
 -encoding 8bit -string $htmlbody]

wrap all parts inside multipart/alternative
set parts [mime::initialize -canonical multipart/alternative \
 -header [list Subject $mailsubject] \
 -header [list To "\"$to\" <$to>"] \
 -header [list From "\"Nagios\" <nagios@yourcompany.com>"] \
 -parts $parts]

Extending Nagios

[288]

smtp::sendmessage $parts \
 -recipients $to \
 -originator "nagios@yourcompany.com" \
 -servers {localhost}

exit 0

To test it simply run:

root@ubuntu:# /opt/nagios/plugins/notify-email-fancy template1 \
 jdoe@yourcompany.com RECOVERY myhost1 OK "OK: host is alive"

This should cause an email to be sent to jdoe@yourcompany.com.

Managing Nagios
 Your application might also want to have some control over Nagios. You might
want to expose an interface for users to take control of your monitoring system, for
example, a web interface or a client-server system. You might also want to handle
custom authorization and access control list. This is something that is beyond the
functionality offered by the web interface that Nagios comes with.

In such cases, it is best to create your own system for reading the current status, as
well as for sending commands directly over the external command pipe. In both
cases, this is very easy to do from any programming language.

The fi rst part is showing Nagios' current status. This requires reading the
status.dat fi le, parsing it to any data format, and then manipulating it. The
format of the fi le is relatively simple—each object is enclosed in a section. Each
section contains one or more name=value directives. For example, the following is a
defi nition of information about the status.dat fi le:

info
{
 created=1214331481
 version=3.0.1
}

A, all hosts, services, and other objects are defi ned in the same way to the defi nition
above. There can be multiple instances of a specifi ed object type; for example, each
hoststatus object defi nition specifi es a single host along with its current status.

Sending commands to Nagios also seems trivial. The details and Details of the most
commonly used commands were given in Chapter 6, Notifi cations and Events. Sending
commands simply involves opening a pipe for writing, sending commands, and
closing the pipe again.

Chapter 11

[289]

Controlling Nagios from an external application is commonly done in PHP, to create
web applications. Implementing the reading of the current status, as well as sending
commands to Nagios, is relatively easier to do in PHP as PHP offers convenient
functions for string manipulation, and regular expressions. Your web application
also needs to limit commands that a user is able to send to Nagios as it might be a
security risk if your application offers functionalities such as disabling and enabling
checks for hosts and/or services.

The following is a function to read the Nagios status fi le and return it as an array of
types of objects:

function readStatus($filename)
{
 $fh = fopen($filename, "r");
 $objname = "";
 while (!feof($fh))
 {
 $line = fgets($fh);
 $line = substr($line, 0, strlen($line)-1);
 if (ereg("^(.*) \{$", $line, $arr))
 {
 if ($objname != "")
 $rc[$objname][] = $ar;
 $objname = $arr[1];
 $arguments = array();
 }
 else if (ereg("^(.*)=(.*)$", trim($line), $arr))
 $ar[trim($arr[1])] = $arr[2];
 }
 return $rc;
}

 It's also relatively easy to write a function that allows you to search for objects by
their type so that they match the specifi ed criteria, for example, all of the services
associated with a host. A sample code to do this is as follows:

function findObject($status, $type, $match)
{
 $rc = array();
 foreach ($status[$type] as $o)
 {
 $ok = true;
 foreach ($match as $mname => $mvalue)
 {
 if ($o[$mname] != $mvalue)

Extending Nagios

[290]

 $ok = false;
 }
 if ($ok)
 $rc[] = $o;
 }
 return $rc;
}

Next, We can test this by reading the status, and fi nding all of the services on the
localhost machine that have critical statuses by invoking the following sample code:

$s = readStatus("/var/nagios/status.dat");
print_r(findObject($s, "servicestatus",
 array("host_name" => "localhost", "last_hard_state" => "2")));

This code will print out an array of all services matching the predefi ned criteria. This
can be used to perform complex searches and show the status depending on many
confi guration options.

 Sending commands to Nagios from PHP is also a very simple thing to do. The
following is a class that offers internal functions for sending commands, as well as
two sample commands that cause Nagios to schedule the next host or service check
on the specifi ed date. If the date is omitted, then the check is run immediately.

class Nagios
{
 var $pipefilename = "/var/nagios/rw/nagios.cmd";
 function writeCommand($str)
 {
 $f = fopen($this->pipefilename, "w");
 fwrite($f, "[" . time() . "] " . $str . "\n");
 fclose($f);
 }
 function scheduleHostCheck($host, $when = "")
 {
 if ($when == "")
 $when = time();
 $this->writeCommand("SCHEDULE_FORCED_HOST_CHECK;" .
 $host . ";" . $when);
 }
 function scheduleServiceCheck($host, $svc, $when = "")
 {
 if ($when == "")
 $when = time();
 $this->writeCommand("SCHEDULE_FORCED_SVC_CHECK;" .
 $host . ";" . $svc . ";" . $when);
 }
}

Chapter 11

[291]

A small section of code to test the functionality is as follows:

$n = new Nagios();
$n->scheduleHostCheck("linux1");
$n->scheduleServiceCheck("localhost", "APT", strtotime("+1 day"));

This initializes an instance of the Nagios class, and then schedules a host check for
the linux1 machine immediately. Next, it schedules the APT service check on the
localhost machine to occur one day from now.

Implementing additional commands should be as simple as specifying new
functions that send commands (http://www.nagios.org/developerinfo/
externalcommands/) to Nagios over the external command pipe. Usually, the
functionality base grows as a project grows, hence, we should not defi ne unused
functions on a just-in-case basis.

Using Passive Checks
 Nagios offers a very powerful mechanism for scheduling tests. However, there are
many situations where you might want to perform tests on your own and just tell
Nagios what the result is. One of the typical scenarios for using passive tests can be
when performing the actual test takes very little time, but the startup overhead is
large. This is usual for languages such as Java, whose runtime initialization requires
a lot of resources.

Another reason might be that checks are done on different machines where the
Nagios instance is running. In many cases, due to security issues, it is not possible
to schedule checks directly from Nagios, as communications not initiated by those
machines are blocked. In this case, it's often best to schedule checks on your own and
simply submit the results back to Nagios. In cases where such tests are going to be
written by you, it's wise to integrate them with a mechanism to send the results over
NSCA directly.

Passive checks are responsible for scheduling and performing tests on their own or
need to be triggered by events. They can also be run as part of other applications.
After a passive check is done, the result needs to be sent to the Nagios server. There
are a couple of ways to do this. The easiest way is to send results over the external
commands pipe, similar to how managing Nagios is done. In this case, application
needs to send proper commands for submitting either service, or host check results.
Nagios will then take care of incorporating results into its database.

Extending Nagios

[292]

Another approach is to use NSCA. This is a protocol for sending results over the
network. NSCA provides a command for sending the results over the network and
requires passing the confi guration fi le that specifi es the protocol, password, and other
information. It is described in more detail in Chapter 7 Passive Checks and NSCA.

The next page contains an example of an application that periodically performs tests
and sends their results to Nagios over the external command pipe. This code consists
of a method to supply information to Nagios, and a main loop that performs tests
every fi ve minutes. It does not contain the actual test that should be performed as
this might vary depending on your needs. The following is a sample Java code to
perform the test and report its results using Nagios external commands pipe.

/* write check status to Nagios pipe */
private static void writeStatus(String host, String svc,
 int code, String output) throws Exception
{
 long time = System.currentTimeMillis() / 1000;
 FileWriter fw = new FileWriter("/var/nagios/rw/nagios.cmd");
 fw.write("[" + time +"] PROCESS_SERVICE_CHECK_RESULT;" +
 host + ";" + svc + ";" + code + ";" + output + "\n");
 fw.close();
}
public static void main(String[] args)
{
 while (true)
 {
 int code;
 StringBuffer output = new StringBuffer();
 /* perform actual test and report error if it failed */
 try
 {
 code = performTest(output);
 }
 catch (Exception e)
 {
 code = 3;
 output = new StringBuffer("Error: "+e.getMessage());
 }
 try
 {
 writeStatus("hostname","serviceDescription",
 code, output.toString());
 }
 catch (Exception e)

Chapter 11

[293]

 {
 System.out.println("Problem sending command to Nagios:" +
 e.getMessage());
 }
 /* wait for 5 minutes between performing tests */
 Thread.sleep(300*1000);
 }
}
private static int performTest(StringBuffer buf)
{
 return 0;
}

Please note that the actual implementation of the performTest method will perform
real tests. The following is a sample test function for connecting over JDBC:

int performTest(StringBuffer output)
{
 String url = "jdbc:mysql://localhost:3306/mysql";
 String username = "root";
 String password = "yourpassword";
 Connection conn;
 try {
 conn = java.sql.DriverManager.
 getConnection(url, username, password);
 conn.close();
 }
 catch (Exception exception) {
 output.append("JDBC CRITICAL: Unable to connect");
 return(2);
 }
 output.append("JDBC OK: Connection established");
 return(0);
}

 To run the tests, you will fi rst need to compile the class. Assuming the source code is
called PerformTests.java, run the following command:

javac PerformTests.java

Now, you can run the actual test:

java -cp . PerformTests

This will send reports to Nagios, so you can check the Nagios log fi le to see whether
it has received information from your test checker.

Extending Nagios

[294]

Very often, you will need to create or extend applications to perform checks on
remote machines. In this case, NSCA is used to send the check results to Nagios
server.

The following is a Python class for sending service and host results over NSCA. It uses
the popen2 API(http://docs.python.org/lib/module-popen2.html) and allows
confi guration of the path to the command, and the confi guration, host, and port:

class nscawriter:
 def __init__(self):
 self.nscacommand = "/opt/nagios/bin/send_nsca"
 self.nscaconfig = "/etc/nagios/send_nsca.cfg"
 self.nscahost = "10.0.0.1"
 self.nscaport = 5667

 def open(self):
 (self.nscaout, self.nscain) = os.popen2(
 "\"" + self.nscacommand + "\"" +
 " -H \"" + self.nscahost + "\"" +
 " -p \"" + str(self.nscaport) + "\"" +
 " -c \"" + self.nscaconfig + "\"")

 def serviceResult(self, host, svc, code, output):
 self.nscaout.write(host + "\t" + svc +
 "\t" + str(code) + "\t" + output + "\n")
 self.nscaout.flush()

 def hostResult(self, host, code, output):
 self.nscaout.write(host +
 "\t" + str(code) + "\t" + output + "\n")
 self.nscaout.flush()

 def close(self):
 self.nscaout.close()

In order to test it, we can run the following code. This will send out a host notifi cation
about the linux1 machine and submit a result for the APT service on that host.

if __name__ == "__main__":
 nsca = nscawriter()
 nsca.open()
 nsca.hostResult("linux1", 0, "Host is reachable")
 nsca.serviceResult("linux1", "APT", 0, "No upgrades available")
 nsca.close()

 You have to open and close the handle on your own. This is because the send_nsca
command has an internal timeout handling for reading results from the standard
input. For the same reason, it is not possible to use the same NSCA instance to
submit results over long periods of time.

Chapter 11

[295]

Summary
Nagios has many places where it can be extended with external scripts or
applications. We have now learned how it can be used to fi t you and your company's
needs. We have also learned that Nagios is not bound to any specifi c language and
that its real power comes from the fact that you can choose the language you'll use to
program your code.

One way Nagios can be made to do what you want it to do is to create your own
check commands, also known as check plugins. Adding your own commands makes
it possible to perform checks using techniques that might not be available using the
default Nagios plugin commands. In many cases, self-created plugins are used to
perform specialized checks. In this, Nagios is still responsible for planning when to
perform the tests and handling their results, but it is up to you to decide how the test
is going to be performed.

A similar approach is to use passive checks and supply the check results to Nagios.
In such a case, you are responsible for performing the test and sending results to
Nagios. Nagios will then handle all of the results of the new status for a host or
service, such as triggering event handlers, sending notifi cations, and so on. Sending
results to Nagios can be done in two different ways. If a check is performed on the
same host as the one where the Nagios daemon is running, results can be written
directly to the Nagios external command pipe. Nagios polls the pipe periodically for
new commands and check results.

If you are performing checks on a machine different from the one where the Nagios
daemon is running, you'll need to somehow send the results over the network.
NSCA can be used for this purpose. It is a protocol that allows the sending of results
to the Nagios daemon over the network in a secure way. It has an interface that is
easy to incorporate into your application or script.

Of course, this chapter does not cover all of the aspects in which Nagios can be
customized. Nagios offers an event handling mechanism that you can use for tasks
such as automatic recovery or the deployment of backup confi guration.

If you are serious about modifying and fi ne-tuning Nagios, be sure to check out the
documentation on the Nagios Event Broker, available on the Nagios development
pages (http://www.nagios.org/developerinfo/). The NEB API can be used to
alter the ways in which Nagios works, and allows the integration of other ways to
store status information. The Nagios Event Broker modules are written in C,
and require much more coding skills than the ones that have been covered in
this chapter.

Index
A
active checks

about 163, 164, 274-277
versus passive checks 164

adaptive monitoring 158-161
Advanced Interactive eXecutive. See AIX
AIX 119

B
benefi ts, Nagios 8,9

C
check_by_ssh plugin, using 193-196
checks performing,

NRPE protocol used 257, 259
comments, managing 79
compiling, Nagios 22
compiling, NRPE 205-208
compiling, NSCA 177-179
confi guring, Nagios

commands, confi guring 44, 46
contact, directives 49, 50
contact group, directives 51, 52
contacts, confi guring 48
custom macro defi nitions 33
group, attributes 43
hosts, confi guring 34-40
hosts, directives 35, 36
hosts groups, directives 39
macro defi nitions 31, 33
main confi guration fi le 28, 31
main confi guration fi le, options 28, 30
notifi cations 56

notifi cation sending, ways 56, 57
object inheritance 53-55
on-demand macro defi nitions 33
service, directives 41
service group, attributes 43
service group, example 43
services, confi guring 40
templates, defi ning 52-55
time periods, confi guring 46-48

confi guring, NSCA server 179-181
confi guring, passive checks 166-168
confi guring, SSH 189-193
custom variables, Nagios 3 131-133

D
database systems monitoring,

Nagios plugins
about 100
MySQL 101, 102
Oracle 103, 104
other databases 105
PostgreSQL 102, 103

data types, SNMP
about 227

dependencies, defi ning
host dependency, defi ning 123
service dependency, defi ning 124, 125

distributed monitoring 261
downtimes, managing

downtimes, scheduling 78, 79
downtimes, status 77, 78

E
email servers monitoring, Nagios plugins

IMAP server 92-94

[298]

POP3 92-94
SMTP daemon, testing 94, 95

escalations, Nagios
about 143, 156
defi ning 148
host escalation defi ning, directives 144, 156
sample 144, 156
service, escalation 1 147
service, escalation 2 147, 148
service escalation, defi ning 145
service escalation, for OpenVPN 145
service escalation defi ning,

directives 145, 147
setting up 143, 156
uses 148

event handlers 152-156
extending, Nagios

active checks 274-277
notifi cations 286-288
passive checks, using 291-294
plugins, writing 277-281
VMware, monitoring 284-286
websites, checking 281-283

external commands pipe, Nagios
about 149
checks, enabling 151
commands formatting, syntax 149
comment, adding to host stating 150
comment, adding to service 150
comments, deleting 150
external command list, viewing 152
limitations 149

F
features, Nagios 11-13
fl apping, Nagios 133-135
freshness, checking 267-270

G
Global System for Mobile Communication.

See GSM
graphical tools, SNMP

about 233-235
TkIned (Tcl/tK based Interactive

Network EDitor) 234
GSM 142, 156

H
host and service dependency,

defi ning 121, 122
hosts, managing

about 69
host information page 72, 73
status 70-72

I
installing, Nagios

by running commands 25, 26
commands 23
confi gure script, running 22
from source tarballs 21
groups, setting up 22
Nagios, compiling 22
Nagios, registering as system service 27, 28
obtaining 20
options 25, 26
prerequisites 18, 19
source packages, downloading 20
users, setting up 22

installing, NRPE
as system service 211, 213

J
Jabber, Nagios notifi cations 140,156

M
macro defi nitions

CONTACTALIAS 33
CONTACTEMAIL 33
CONTACTGROUPNAMES 33
CONTACTNAME 33
HOSTADDRESS 32
HOSTDISPLAYNAME 32
HOSTGROUPNAMES 33
HOSTNAME 32
HOSTSTATE 32
LASTHOSTCHECK 33
LASTHOSTSTATE 33
on-demand macro defi nitions 33
SERVICEDESC 33
SERVICEGROUPNAMES 33

[299]

SERVICESTATE 33
Management Information Base. See MIB
managing, Nagios 288-291
MIB

about 223, 227
working with 233

miscellaneous plugins, Nagios plugins
APT updates, checking 112, 113
dummy checking plugin 114
LM sensors 114
other plugins output, monitoring 115
UPS status, checking 113, 114

monitoring, SSH 188, 189
monitoring resources, benefi ts 9, 10
multiple checks

drawbacks 197
performing 196-201

N
Nagios

about 8, 9
active checks 163, 164
active checks, performing 165
advantages 272, 273
benefi ts 8, 9
check_by_ssh plugin, using 193- 196
check_mrtg plugin 249
check_snmp plugin 241
comments, managing 79
confi guration, storing 120
confi gurations 118, 119
confi guring 28
confi guring, for NRPE 214, 215
dependencies, defi ning 121-125
downtimes, managing 77
escalations 143-156
event handlers 152-156
extending 271
external commands pipe 149
features 11-13
fi le structure, confi guration 120, 121
fl apping 133-135
freshness, checking 267-270
hard state 13, 14
hosts, managing 69, 70
installing 18

managing 288-291
master 261
monitoring resources, benefi ts 9, 10
multiple checks, performing 196-201
notifi cations 138-156
notifi cations, modifying 157, 158
NSCA 175, 176
passive checks 164
passive checks, performing 165
plugins 20
registering as system service 27, 28
reports 83, 85, 86
services, managing 73
slave 261
soft state 13, 14
Tcl 273
templates, using 126-131
upgrading, from previous versions 18
versions 14-16
web interface 60
Windows hosts, monitoring 252

Nagios 3
custom variables 131-133

Nagios 3.0
about 14-16
adaptive monitoring 158-161

Nagios information
performance information 82, 83
process information 81, 82

Nagios instances
confi guring 265-267

Nagios plugins 20
about 87
database systems, monitoring 100
email servers, monitoring 92
miscellaneous plugins 112
networking related plugins, options 88, 89
network services, monitoring 95
parameters 88
resource, monitoring 109
standard network plugins 89
storage space 105

Nagios Remote Plugin Executor. See NRPE
Nagios Service Check Acceptor. See NSCA
NET-SNMP package

about 230
commands 231

[300]

network services monitoring,
Nagios plugins

DHCP tests 96, 97
FTP server 95, 96
Nagios daemon, verifying 98
web sites, testing 99, 100

notifi cations
about 56
sending out, ways 56, 57

notifi cations, Nagios
about 138, 140, 156
drawbacks 139, 156
example 138, 139, 156
handling, ways 140, 156
Jabber used 140, 156
messages sending, GSM terminals

used 142, 156
messages sending, SMB/CIFS

used 141, 156
modifying 157, 158
Tkabber used 141, 156

NRPE
about 202
compiling 205-208
daemon, confi guring 208-211
installing, as system service 211, 213
Nagios, confi guring 214, 215
obtaining 205
troubleshooting 219, 220

NRPE and command
arguments 216-218

NSCA
about 175
client part 175
compiling 177-179
example 176
obtaining 176
parts 175
results, sending over NSCA 181-184
security 184
server, confi guring 179-181
server part 175

NSClient++
about 252
checks performing,

NRPE protocol used 257, 259
confi guring 254

installing 252
passive checks, NSCA protocol

used 259, 260
sample confi guration fi le 254
tests performing, check_nt used 255, 257

NSCP. See NSClient++

O
obsessive notifi cations

about 263
setting up 263-265

obtaining, NSCA 176

P
PacketLoss. See PKTLOSS
passive checks

about 164
confi guring 166-168
hosts 168-170
services 170-172
troubleshooting 172-174
versus active checks 164

passive checks,
NSCA protocol used 259, 260

passive checks, using 291-294
PKTLOSS 90
plugins, SNMP 249
plugins, writing 277-281
PPP (Point-to-Point Protocol) 227

R
remote checks

NRPE used 202, 203
SSHE used 188

reports
about 83-86

resource monitoring, Nagios plugins
logged-in users, monitoring 111, 112
processes, checking 110, 111
system load 110

result, reporting over NSCA 181, 183, 184
Round Trip Average 90
RTA 90

[301]

S
security, NSCA 184
services, managing

service information page 75, 77
status 73-75

Simple Messaging Service. See SMS
Simple Network Management Protocol.

See SNMP
SMS 140, 156
SMSServerTools

about 142, 156
SNMP

about 223, 224, 252
agent 224
agent, setting up 236-240
check_ifoperstatus plugin 244
check_ifstatus plugin 243
commands and services, confi guring 244
communication types 225
Community-Based Simple Network

Management protocol 2
(SNMPv2c) 226

data objects 226
getnext request 225
get request 224
graphical tools 233, 234, 235
manager 224
Object Identifi ers (OIDs) 226
Object Identifi ers (OIDs), example 228, 229
plugins 243
plugins, syntax 243
set request 224
SNMPv1 225
SNMPv3 226
trap 224
traps, receiving 245-248
UDP (User Datagram Protocol) 224
User-Based Network Management Protocol

version 2 (SNMPv2u) 226
using, from Nagios 241, 242
version 2 225
version 3 226
versions 225
working with 229-232

SNMP agent, setting up 236-240
SNMP traps, receiving 245-248

Software Testing Automation Framework.
See STAF

SSH
confi guring 189-193
monitoring 188, 189

SSH-based checks, troubleshooting 201, 202
STAF 218
standard network plugins, Nagios plugins

about 89
connectivity, testing over TCP

and UDP 91, 92
host status, checking 90

storage space, Nagios plugins
about 105
disk space, checking 107, 108
IDE/SCSI SMART, monitoring 106, 107
remote shares, free space

testing for 108, 109
virtual memory, monitoring 105

T
Tcl 273
templates, using in Nagios 126-131
tests performing, check_nt used 255-257
troubleshooting, NRPE 219, 220
troubleshooting, passive checks 172- 174

V
VMware, monitoring 284-286

W
web interface, setting up

about 60
troubleshooting 63-65
web interface, accessing 62
web server, confi guring 60-62

web interface, using
about 66
status page 68, 69
tactical overview page 66, 68

websites, checking 281-283
Windows hosts, monitoring 252

Thank you for buying
Learning Nagios 3.0

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Learning Nagios 3.0, Packt will have given some of the
money received to the Nagios project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Zenoss Core
ISBN: 978-1-847194-28-2 Paperback: 261 pages

A step-by-step guide to configuring, using, and
adapting this free Open Source network monitoring
system - with a Foreword by Mark R. Hinkle, VP of
Community Zenoss Inc.

1.	 Discover, manage, and monitor IT resources
2.	 Build custom event processing and

alerting rules
3.	 Configure Zenoss Core via an easy to use

web interface
4.	 Drag and drop dashboard portlets with

Google Maps integration

Zimbra
ISBN: 978-1-847192-08-0 Paperback: 220 pages

Get your organization up and running with
Zimbra, fast

1.	 Get your organization up and running with
Zimbra, fast

2.	 Administer the Zimbra server and work with
the Zimbra web client

3.	 Protect your Zimbra installation from hackers,
spammers, and viruses

4.	 Access Zimbra from Microsoft Outlook

Please check www.PacktPub.com for information on our titles

[303]

	FM: Learning Nagios 3.0
	Table of Content
	Preface
	Chapter 1: Introduction
	Introduction to Nagios
	Benefits of Monitoring Resources
	Main Features
	Soft and Hard States
	What's New in Nagios 3.0?
	Summary

	Chapter 2: Installation and Configuration
	Installation
	Upgrading from Previous Versions
	Prerequisites
	Obtaining Nagios
	Setting up Users and Groups
	Nagios Compilation
	Registering Nagios as a System Service

	Nagios Configuration
	Main Configuration File
	Macro Definitions
	Configuring Hosts
	Configuring Services
	Configuring Commands
	Configuring Time Periods
	Configuring Contacts
	Templates and Object Inheritance
	Introduction to Notifications

	Summary

	Chapter 3: Using the Nagios Web Interface
	Setting up the Web Interface
	Configuring the Web Server
	Accessing the Web Interface
	Troubleshooting

	Using the Web Interface
	Tactical Overview
	Status map

	Managing Hosts
	Status
	Host Information

	Managing Services
	Status
	Service Information

	Managing Downtimes
	Downtimes Status
	Scheduling Downtimes

	Managing Comments
	Nagios Information
	Process Information
	Performance Information

	Reports
	Summary

	Chapter 4: Overview of Nagios Plugins
	Standard Network Plugins
	Checking If a Host is Alive
	Testing Connectivity over TCP and UDP

	Monitoring Email Servers
	POP3 and IMAP Checks
	SMTP Daemon Testing

	Monitoring Network Services
	FTP Server
	DHCP Tests
	Verifying the Nagios Daemon
	Testing Web Sites

	Monitoring Database Systems
	MySQL
	PostgreSQL
	Oracle
	Other Databases

	Storage Space
	Virtual Memory Monitoring
	Monitoring IDE/SCSI SMART
	Checking Disk Space
	Testing Free Space for Remote Shares

	Resource Monitoring
	System Load
	Checking Processes
	Monitoring Logged-in Users

	Miscellaneous Plugins
	APT Updates Checking
	UPS Status Checking
	LM Sensors
	Dummy Check Plugin
	Manipulating Other Plugins' Output

	Summary

	Chapter 5: Advanced Configuration
	Maintainable Configurations
	Configuration File Structure
	Defining Dependencies
	Using Templates
	Custom Variables
	Flapping
	Summary

	Chapter 6: Notifications and Events
	Effective Notifications
	Escalations
	External Commands
	Event Handlers
	Modifying Notifications
	Adaptive Monitoring
	Summary

	Chapter 7: Passive Checks and NSCA
	What are Passive Checks?
	Configuring Passive Checks
	Passive Checks—Hosts
	Passive Checks—Services
	Troubleshooting Passive Checks
	What is NSCA?
	Obtaining NSCA
	Compiling NSCA
	Configuring the NSCA Server
	Sending results over NSCA
	Security Concerns
	Summary

	Chapter 8: Monitoring Remote Hosts
	Monitoring over SSH
	Configuring SSH
	Using the check_by_ssh Plugin
	Performing Multiple Checks
	Troubleshooting SSH-Based Checks
	Introduction to NRPE
	Obtaining NRPE
	Compiling NRPE
	Configuring the NRPE Daemon
	Installing NRPE as a System Service
	Configuring Nagios for NRPE
	NRPE and Command Arguments
	Other Approaches
	Troubleshooting NRPE
	Summary

	Chapter 9: SNMP
	Introduction to SNMP
	Data Objects
	Working with SNMP and MIB
	Graphical Tools
	Setting up an SNMP Agent
	Using SNMP from Nagios
	Receiving Traps
	Additional Plugins
	Summary

	Chapter 10: Advanced Monitoring
	Monitoring Windows Hosts
	NSClient++
	Performing Tests via check_nt
	Performing Checks with NRPE Protocol
	Passive Checks using NSCA Protocol
	Distributed Monitoring
	Obsessive Notifications
	Configuring Nagios Instances
	Freshness Checking
	Summary

	Chapter 11: Extending Nagios
	Introduction
	Active Checks
	Writing Plugins the Right Way
	Checking Websites
	Monitoring VMware
	Your Own Notifications
	Managing Nagios
	Using Passive Checks
	Summary

	Index

